182 research outputs found

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR

    Velocity-selective sublevel resonance of atoms with an array of current-carrying wires

    Full text link
    Resonance transitions between the Zeeman sublevels of optically-polarized Rb atoms traveling through a spatially periodic magnetic field are investigated in a radio-frequency (rf) range of sub-MHz. The atomic motion induces the resonance when the Zeeman splitting is equal to the frequency at which the moving atoms feel the magnetic field oscillating. Additional temporal oscillation of the spatially periodic field splits a motion-induced resonance peak into two by an amount of this oscillation frequency. At higher oscillation frequencies, it is more suitable to consider that the resonance is mainly driven by the temporal field oscillation, with its velocity-dependence or Doppler shift caused by the atomic motion through the periodic field. A theoretical description of motion-induced resonance is also given, with emphasis on the translational energy change associated with the internal transition.Comment: 7 pages, 3 figures, final versio

    Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila

    Get PDF
    Protochlamydia amoebophila UWE25 is related to the Chlamydiaceae comprising major pathogens of humans, but thrives as obligate intracellular symbiont in the protozoan host Acanthamoeba sp. The genome of P. amoebophila encodes five paralogous carrier proteins belonging to the nucleotide transporter (NTT) family. Here we report on three P. amoebophila NTT isoforms, PamNTT2, PamNTT3 and PamNTT5, which possess several conserved amino acid residues known to be critical for nucleotide transport. We demonstrated that these carrier proteins are able to transport nucleotides, although substrate specificities and mode of transport differ in an unexpected manner and are unique among known NTTs. PamNTT2 is a counter exchange transporter exhibiting submillimolar apparent affinities for all four RNA nucleotides, PamNTT3 catalyses an unidirectional proton-coupled transport confined to UTP, whereas PamNTT5 mediates a proton-energized GTP and ATP import. All NTT genes of P. amoebophila are transcribed during intracellular multiplication in acanthamoebae. The biochemical characterization of all five NTT proteins from P. amoebophila in this and previous studies uncovered that these metabolically impaired bacteria are intimately connected with their host cell’s metabolism in a surprisingly complex manner

    Endotracheal tube mucus as a source of airway mucus for rheological study

    Get PDF
    Muco-obstructive lung diseases (MOLDs), like cystic fibrosis and chronic obstructive pulmonary disease, affect a spectrum of subjects globally. In MOLDs, the airway mucus becomes hyperconcentrated, increasing osmotic and viscoelastic moduli and impairing mucus clearance. MOLD research requires relevant sources of healthy airway mucus for experimental manipulation and analysis. Mucus collected from endotracheal tubes (ETT) may represent such a source with benefits, e.g., in vivo production, over canonical sample types such as sputum or human bronchial epithelial (HBE) mucus. Ionic and biochemical compositions of ETT mucus from healthy human subjects were characterized and a stock of pooled ETT samples generated. Pooled ETT mucus exhibited concentration-dependent rheologic properties that agreed across spatial scales with reported individual ETT samples and HBE mucus. We suggest that the practical benefits compared with other sample types make ETT mucus potentially useful for MOLD research

    Prospects for Studies of Stellar Evolution and Stellar Death in the JWST Era

    Full text link
    I review the prospects for studies of the advanced evolutionary stages of low-, intermediate- and high-mass stars by the JWST and concurrent facilities, with particular emphasis on how they may help elucidate the dominant contributors to the interstellar dust component of galaxies. Observations extending from the mid-infrared to the submillimeter can help quantify the heavy element and dust species inputs to galaxies from AGB stars. JWST's MIRI mid-infrared instrument will be so sensitive that observations of the dust emission from individual intergalactic AGB stars and planetary nebulae in the Virgo Cluster will be feasible. The Herschel Space Observatory will enable the last largely unexplored spectral region, the far-IR to the submillimeter, to be surveyed for new lines and dust features, while SOFIA will cover the wavelength gap between JWST and Herschel, a spectral region containing important fine structure lines, together with key water-ice and crystalline silicate bands. Spitzer has significantly increased the number of Type II supernovae that have been surveyed for early-epoch dust formation but reliable quantification of the dust contributions from massive star supernovae of Type II, Type Ib and Type Ic to low- and high-redshift galaxies should come from JWST MIRI observations, which will be able to probe a volume over 1000 times larger than Spitzer.Comment: 24 pages, 19 figures. To appear in `Astrophysics in the Next Decade: JWST and Concurrent Facilities' (JWST Conference Proceedings), edited by H. A. Thronson, M. Stiavelli and A. G. G. M. Tielens; Springer Series: Astrophysics and Space Science Proceeding

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions

    Dust in Supernovae and Supernova Remnants I : Formation Scenarios

    Get PDF
    Supernovae are considered as prime sources of dust in space. Observations of local supernovae over the past couple of decades have detected the presence of dust in supernova ejecta. The reddening of the high redshift quasars also indicate the presence of large masses of dust in early galaxies. Considering the top heavy IMF in the early galaxies, supernovae are assumed to be the major contributor to these large amounts of dust. However, the composition and morphology of dust grains formed in a supernova ejecta is yet to be understood with clarity. Moreover, the dust masses inferred from observations in mid-infrared and submillimeter wavelength regimes differ by two orders of magnitude or more. Therefore, the mechanism responsible for the synthesis of molecules and dust in such environments plays a crucial role in studying the evolution of cosmic dust in galaxies. This review summarises our current knowledge of dust formation in supernova ejecta and tries to quantify the role of supernovae as dust producers in a galaxy.Peer reviewe
    corecore