75 research outputs found

    The effect of the annealing temperature on the local distortion of La0.67_{0.67}Ca0.33_{0.33}MnO3_3 thin films

    Full text link
    Mn KK-edge fluorescence data are presented for thin film samples (3000~\AA) of Colossal Magnetoresistive (CMR) La0.67_{0.67}Ca0.33_{0.33}MnO3_3: as-deposited, and post-annealed at 1000 K and 1200 K. The local distortion is analyzed in terms of three contributions: static, phonon, and an extra, temperature-dependent, polaron term. The polaron distortion is very small for the as-deposited sample and increases with the annealing temperature. In contrast, the static distortion in the samples decreases with the annealing temperature. Although the local structure of the as-deposited sample shows very little temperature dependence, the change in resistivity with temperature is the largest of these three thin film samples. The as-deposited sample also has the highest magnetoresistance (MR), which indicates some other mechanism may also contribute to the transport properties of CMR samples. We also discuss the relationship between local distortion and the magnetization of the sample.Comment: 11 pages of Preprint format, 8 figures in one tar fil

    A new treatment for neonatal scours

    Get PDF
    Scours account for significant losses to the US swine industry every year. A common treatment for scours is the administration of broad-spectrum antibiotics, a practice with increasing unpopularity in the eyes of consumers. Currently, no treatment is available to reduce or eliminate the fluid losses associated with scours that is both inexpensive and easy to use. In the present study, a variety of prospective drugs were used to determine if a single compound might inhibit the effects of bacterial toxins in a laboratory setting. The results indicate that a new class of drugs, which we call DASUs, likely will prove useful for the treatment of watery diarrhea. Additional studies are underway to validate this conclusion.; Swine Day, Manhattan, KS, November 18, 199

    Dust Devil Tracks

    Get PDF
    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns

    A new treatment for neonatal scours

    Get PDF
    Scours account for significant losses to the US swine industry every year. A common treatment for scours is the administration of broad-spectrum antibiotics, a practice with increasing unpopularity in the eyes of consumers. Currently, no treatment is available to reduce or eliminate the fluid losses associated with scours that is both inexpensive and easy to use. In the present study, a variety of prospective drugs were used to determine if a single compound might inhibit the effects of bacterial toxins in a laboratory setting. The results indicate that a new class of drugs, which we call DASUs, likely will prove useful for the treatment of watery diarrhea. Additional studies are underway to validate this conclusion
    corecore