1,040 research outputs found
Cigarette Staining and Cleaning of a Maxillofacial Silicone
In this study, a maxillofacial silicone elastomer was stained with cigarette smoke. The stain was then removed by solvent extraction using 1,1, 1-trichloroethane. The cigarette smoke produced large color changes in the elastomer as measured from spectrophotometric reflectance curves. The solvent was totally effective in removing the cigarette stain without changing the color of the silicone base.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67997/2/10.1177_00220345830620072101.pd
Size-dependent decoherence of excitonic states in semiconductor microcrystallites
The size-dependent decoherence of the exciton states resulting from the
spontaneous emission is investigated in a semiconductor spherical
microcrystallite under condition . In general, the
larger size of the microcrystallite corresponds to the shorter coherence time.
If the initial state is a superposition of two different excitonic coherent
states, the coherence time depends on both the overlap of two excitonic
coherent states and the size of the microcrystallite. When the system with
fixed size is initially in the even or odd coherent states, the larger average
number of the excitons corresponds to the faster decoherence. When the average
number of the excitons is given, the bigger size of the microcrystallite
corresponds to the faster decoherence. The decoherence of the exciton states
for the materials GaAs and CdS is numerically studied by our theoretical
analysis.Comment: 4 pages, two figure
High-harmonic generation from a confined atom
The order of high harmonics emitted by an atom in an intense laser field is
limited by the so-called cutoff frequency. Solving the time-dependent
Schr\"odinger equation, we show that this frequency can be increased
considerably by a parabolic confining potential, if the confinement parameters
are suitably chosen.
Furthermore, due to confinement, the radiation intensity remains high
throughout the extended emission range. All features observed can be explained
with classical arguments.Comment: 4 pages(tex files), 4 figures(eps files); added references and
comment
Ion-beam-driven intense electrostatic solitary waves in reconnection jet
Electrostatic solitary waves (ESWs) have been reported inside reconnection jets, but their source and role remain unclear hitherto. Here we present the first observational evidence of ESWs generation by cold ion beams inside the jet, by using high-cadence measurements from the Magnetospheric Multiscale spacecraft in the Earth's magnetotail. Inside the jet, intense ESWs with amplitude up to 30 mV m(-1) and potential up to similar to 7% of the electron temperature are observed in association with accelerated cold ion beams. Instability analysis shows that the ion beams are unstable, providing free energy for the ESWs. The waves are observed to thermalize the beams, thus providing a new channel for ion heating inside the jet. Our study suggests that electrostatic turbulence can play an important role in the jet dynamics.Peer reviewe
Surface modified silicon nanochannel for urea sensing
Silicon nanowires have been surface functionalized with the enzyme urease for
biosensor applications to detect and quantify urea concentration. The device is
nanofabricated from a silicon on insulator (SOI) wafer with a top down
lithography approach. The differential conductance of silicon nanowires can be
tuned for optimum performance using the source drain bias voltage, and is
sensitive to urea at low concentration. The experimental results show a linear
relationship between surface potential change and urea concentration in the
range of 0.1 to 0.68 mM. The sensitivity of our devices shows high
reproducibility with time and different measurement conditions. The nanowire
urea biosensor offers the possibility of high quality, reusable enzyme sensor
array integration with silicon based circuits.Comment: 5 pages, 6 figures, two-column format. Related papers can be found at
nano.bu.ed
Observation of two relaxation mechanisms in transport between spin split edge states at high imbalance
Using a quasi-Corbino geometry to directly study electron transport between
spin-split edge states, we find a pronounced hysteresis in the I-V curves,
originating from slow relaxation processes. We attribute this long-time
relaxation to the formation of a dynamic nuclear polarization near the sample
edge. The determined characteristic relaxation times are 25 s and 200 s which
points to the presence of two different relaxation mechanisms. The two time
constants are ascribed to the formation of a local nuclear polarization due to
flip-flop processes and the diffusion of nuclear spins.Comment: Submitted to PR
Relativistic Structure of the Deuteron: 1.Electro-disintegration and y-scaling
Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the
deuteron with realistic interaction kernel including the exchange of pi, sigma,
omega, rho, eta and delta mesons, are used to systematically investigate
relativistic effects in inclusive quasi-elastic electron-deuteron scattering
within the relativistic impulse approximation. Relativistic y-scaling is
considered by generalising the non relativistic scaling function to the
relativistic case, and it is shown that y-scaling does occur in the usual
relativistic scaling variable resulting from the energy conservation in the
instant form of dynamics. The present approach of y-scaling is fully covariant,
with the deuteron being described by eight components, viz. the 3S_1^{++},
3S_1^{--}, 3D_1^{++}, 3D_1^{--}, 3P_1^{+-}, 3P_1^{-+}, 1P_1^{+-}, 1P_1^{-+}
waves. It is demonstrated that if the negative relative energy states 1P_1,
3P_1 are disregarded, the concept of covariant momentum distributions N(p_0,p),
with p_0=M_D/2-\sqrt{p^2+m^2}, can be introduced, and that calculations of
lectro-disintegration cross section in terms of these distributions agree
within few percents with the exact calculations which include the 1P_1, 3P_1
states, provided the nucleon three momentum |p|\<= 1 GeV/c; in this momentum
range, the asymptotic relativistic scaling function is shown to coincide with
the longitudinal covariant momentum distribution.Comment: 32 LaTeX pages, 18 eps-figures. Final version to appear in Phys. Rev.
Magnetic field effects on the density of states of orthorhombic superconductors
The quasiparticle density of states in a two-dimensional d-wave
superconductor depends on the orientation of the in-plane external magnetic
field H. This is because. in the region of the gap nodes, the Doppler shift due
to the circulating supercurrents around a vortex depend on the direction of H.
For a tetragonal system the induced pattern is four-fold symmetric and, at zero
energy, the density of states exhibits minima along the node directions. But
YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes
two-fold symmetric with the position of the minima occuring when H is oriented
along the Fermi velocity at a node on the Fermi surface. The effect of impurity
scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure
Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets
The electrical transport properties of amorphous Bi films prepared by
sequential quench deposition have been studied in situ. A
superconductor-insulator (S-I) transition was observed as the film was made
increasingly thicker, consistent with previous studies. Unexpected behavior was
found at the initial stage of film growth, a regime not explored in detail
prior to the present work. As the temperature was lowered, a positive
temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance
reaching a minimum before the dR/dT became negative again. This behavior was
accompanied by a non-linear and asymmetric I-V characteristic. As the film
became thicker, conventional variable-range hopping (VRH) was recovered. We
attribute the observed crossover in the electrical transport properties to an
amorphous to granular structural transition. The positive dR/dT found in the
amorphous phase of Bi formed at the initial stage of film growth was
qualitatively explained by the formation of metallic droplets within the
electron glass.Comment: 7 pages, 6 figure
Charged Higgs Observability Through Associated Production With W at a Muon Collider
The observability of a charged Higgs boson produced in association with a W
boson at future muon colliders is studied. The analysis is performed within the
MSSM framework. The charged Higgs is assumed to decay to tb and a fully
hadronic final state is analyzed, i.e., mu+mu- \rightarrow H\pmW\mp \rightarrow
tbW \rightarrow WbbW \rightarrow jjjjbb. The main background is tt production
in fully hadronic final state which is an irreducible background with very
similar kinematic features. It is shown that although the discovery potential
is almost the same for a charged Higgs mass in the range 200 GeV < mH\pm < 400
GeV, the signal significance is about 1sigma for tanbeta = 50 at integrated
luminosity of 50 fb-1. The signal rate is well above that at e+e- linear
colliders with the same center of mass energy and enough data (O(1 ab-1)) will
provide the same discovery potential for all heavy charged Higgs masses up to
mH\pm \sim 400 GeV, however, the muon collider cannot add anything to the LHC
findings.Comment: 18 pages, 11 figure
- …