214 research outputs found
Cigarette Staining and Cleaning of a Maxillofacial Silicone
In this study, a maxillofacial silicone elastomer was stained with cigarette smoke. The stain was then removed by solvent extraction using 1,1, 1-trichloroethane. The cigarette smoke produced large color changes in the elastomer as measured from spectrophotometric reflectance curves. The solvent was totally effective in removing the cigarette stain without changing the color of the silicone base.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67997/2/10.1177_00220345830620072101.pd
Scales of the Extra Dimensions and their Gravitational Wave Backgrounds
Circumstances are described in which symmetry breaking during the formation
of our three-dimensional brane within a higher-dimensional space in the early
universe excites mesoscopic classical radion or brane-displacement degrees of
freedom and produces a detectable stochastic background of gravitational
radiation. The spectrum of the background is related to the unification energy
scale and the the sizes and numbers of large extra dimensions. It is shown that
properties of the background observable by gravitational-wave observatories at
frequencies Hz to Hz contain information about
unification on energy scales from 1 to TeV, gravity propagating
through extra-dimension sizes from 1 mm to mm, and the dynamical
history and stabilization of from one to seven extra dimensions.Comment: 6 pages, Latex, 1 figure, submitted to Phys. Re
Benchmarking Taxonomic and Genetic Diversity After the Fact: Lessons Learned From the Catastrophic 2019–2020 Australian Bushfires
Environmental catastrophes are increasing in frequency and severity under climate change, and they substantially impact biodiversity. Recovery actions after catastrophes depend on prior benchmarking of biodiversity and that in turn minimally requires critical assessment of taxonomy and species-level diversity. Long-term recovery of species also requires an understanding of within-species diversity. Australia’s 2019–2020 bushfires were unprecedented in their extent and severity and impacted large portions of habitats that are not adapted to fire. Assessments of the fires’ impacts on vertebrates identified 114 species that were a high priority for management. In response, we compiled explicit information on taxonomic diversity and genetic diversity within fire-impacted vertebrates to provide to government agencies undertaking rapid conservation assessments. Here we discuss what we learned from our effort to benchmark pre-fire taxonomic and genetic diversity after the event. We identified a significant number of candidate species (genetic units that may be undescribed species), particularly in frogs and mammals. Reptiles and mammals also had high levels of intraspecific genetic structure relevant to conservation management. The first challenge was making published genetic data fit for purpose because original publications often focussed on a different question and did not provide raw sequence read data. Gaining access to analytical files and compiling appropriate individual metadata was also time-consuming. For many species, significant unpublished data was held by researchers. Identifying which data existed was challenging. For both published and unpublished data, substantial sampling gaps prevented areas of a species’ distribution being assigned to a conservation unit. Summarising sampling gaps across species revealed that many areas were poorly sampled across taxonomic groups. To resolve these issues and prepare responses to future catastrophes, we recommend that researchers embrace open data principles including providing detailed metadata. Governments need to invest in a skilled taxonomic workforce to document and describe biodiversity before an event and to assess its impacts afterward. Natural history collections should also target increasing their DNA collections based on sampling gaps and revise their collection strategies to increasingly take population-scale DNA samples in order to document within-species genetic diversity.Funding for this project was provided by the National
Environmental Science Programme Threatened Species
Recovery Hub, Theme 8: Post bushfire recovery
support, and the Centre for Biodiversity Analysis
(https://biology.anu.edu.au/research/centres-units/centre-biodiv
ersity-analysis)
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
Amplitude measurements of Faraday waves
A light reflection technique is used to measure quantitatively the surface
elevation of Faraday waves. The performed measurements cover a wide parameter
range of driving frequencies and sample viscosities. In the capillary wave
regime the bifurcation diagrams exhibit a frequency independent scaling
proportional to the wavelength. We also provide numerical simulations of the
full Navier-Stokes equations, which are in quantitative agreement up to
supercritical drive amplitudes of 20%. The validity of an existing perturbation
analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure
Masses of ground and excited-state hadrons
We present the first Dyson-Schwinger equation calculation of the light hadron
spectrum that simultaneously correlates the masses of meson and baryon ground-
and excited-states within a single framework. At the core of our analysis is a
symmetry-preserving treatment of a vector-vector contact interaction. In
comparison with relevant quantities the
root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our
results is agreement between the computed baryon masses and the bare masses
employed in modern dynamical coupled-channels models of pion-nucleon reactions.
Our analysis provides insight into numerous aspects of baryon structure; e.g.,
relationships between the nucleon and Delta masses and those of the
dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …