365 research outputs found

    Democratic (S)fermions and Lepton Flavor Violation

    Full text link
    The democratic approach to account for fermion masses and mixing is known to be successful not only in the quark sector but also in the lepton sector. Here we extend this ansatz to supersymmetric standard models, in which the K\"ahler potential obeys underlying S_3 flavor symmetries. The requirement of neutrino bi-large mixing angles constrains the form of the K\"ahler potential for left-handed lepton multiplets. We find that right-handed sleptons can have non-degenerate masses and flavor mixing, while left-handed sleptons are argued to have universal and hence flavor-blind masses. This mass pattern is testable in future collider experiments when superparticle masses will be measured precisely. Lepton flavor violation arises in this scenario. In particular, \mu \to e \gamma is expected to be observed in a planning future experiment if supersymmetry breaking scale is close to the weak scale.Comment: 22 pages, 2 figure

    A Study of the S=1/2 Alternating Chain using Multiprecision Methods

    Full text link
    In this paper we present results for the ground state and low-lying excitations of the S=1/2S=1/2 alternating Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the dimer limit and numerical diagonalization of systems of up to 28 spins. A novel application of multiple precision numerical diagonalization allows us to determine analytical perturbation series to high order; the results found using this approach include ninth-order perturbation series for the ground state energy and one magnon gap, which were previously known only to third order. We also give the fifth-order dispersion relation and third-order exclusive neutron scattering structure factor for one-magnon modes and numerical and analytical binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm

    A community-engaged approach to investigate cardiovascular-associated inflammation among American Indian women: A research protocol

    Get PDF
    American Indian women are more likely to die from cardiovascular disease (CVD) than White or African American women. Inflammatory processes may underlie CVD disparities by gender and race and may be critical to understanding population-specific drivers and potential buffers. Exposure to environmental air pollutants, especially particulate matter (PM), is known to be an important catalyst in CVD-associated inflammation. Positive psychological states, associated with low levels of inflammatory gene expression, could serve to moderate the inflammatory response to environmental air pollutants and ultimately lead to better cardiovascular health outcomes. The aim of the ongoing community-engaged and NIH-funded study described in this study protocol is to address the racial and gender gaps in CVD mortality by investigating the contextually relevant and culturally important determinants of health among American Indian women. In this paper we describe the procedures used to examine the relationship between environmental air pollutant exposures (PM 10-2.5 and PM 2.5 ), psychological factors (e.g., depressive symptoms, posttraumatic stress symptoms, eudemonic well-being, and positive emotions), and cardiovascular-associated inflammation (hs-CRP, IL-6, Amyloid A, CBCs with differentials) in a sample of 150 women 18–50 years of age from the Lumbee Tribe in southeastern North Carolina. We describe lessons learned and strategies used in developing a community-engaged approach to enhance recruitment of American Indian women in biomedical research. The empirical data and community infrastructure resulting from this study will be foundational in designing and testing future interventions to reduce CVD-associated morbidity and mortality in American Indian women

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Why do people drive when they can't see clearly?

    Get PDF
    © 2018 Elsevier Ltd Purpose: Refractive blur is associated with decreased hazard perception and impairments in driving performance, but little is known about why people who have spectacles to correct their distance vision drive with uncorrected vision. Methods: We conducted six focus groups. Participants were 30 drivers (mean age 45) who reported having driven uncorrected at least twice in the past six months despite having spectacles to correct their distance vision. Focus groups were audio recorded, transcribed verbatim and analysed thematically. Results: We identified three themes. 1. Responsibility: participants did not feel obliged to drive with optimal vision and believed that others have a responsibility to ensure drivers maintain clear vision. 2. Safe Enough: participants felt safe to drive uncorrected, did not believe they need to wear spectacles to see sufficiently clearly and that they would know if their uncorrected eyesight fails to meet minimum standards. 3. Situations: participants discussed how they would drive uncorrected for short and familiar journeys, when they feel alert, in daylight and in good weather. Conclusions: Beliefs about the importance of driving with clear vision compete with the benefits of not wearing spectacles. Eyecare professionals should provide more direct advice to patients regarding the need to wear their visual correction for driving
    corecore