691 research outputs found

    Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows.

    Get PDF
    We present a cantilever fabricated from the polymer SU-8 for the measurement of wall shear stress in fluid flows. The pressure induced deflection of the cantilever, measured using a calibrated and integrated nichrome strain gauge, can be related to the wall shear stress on the surface. The initial degree of curvature of the cantilever can be controlled via the exposure dose, which allows a small positive deflection to be achieved, and so minimises the intrusion into the flow. Wind tunnel testing results show a sensitivity greater than 2.5 mV/Pa, with a shear stress of 0.38 Pa and excitation of 1 V

    Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities

    Get PDF
    We analyze the signal processing required for the optimal detection of a stochastic background of gravitational radiation using laser interferometric detectors. Starting with basic assumptions about the statistical properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels required for detection are then calculated. Issues related to: (i) calculating the signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii) performing the data analysis in the presence of nonstationary detector noise, (iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search, (iv) correlating the outputs of 4 or more detectors, and (v) allowing for the possibility of correlated noise in the outputs of two detectors are discussed. We briefly describe a computer simulation which mimics the generation and detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous graphs and tables of numerical data for the five major interferometers (LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. The treatment given in this paper should be accessible to both theorists involved in data analysis and experimentalists involved in detector design and data acquisition.Comment: 81 pages, 30 postscript figures, REVTE

    Preliminary estimates of the abundance and fidelity of dolphins associating with a demersal trawl fishery

    Get PDF
    The incidental capture of wildlife in fishing gear presents a global conservation challenge. As a baseline to inform assessments of the impact of bycatch on bottlenose dolphins (Tursiops truncatus) interacting with an Australian trawl fishery, we conducted an aerial survey to estimate dolphin abundance across the fishery. Concurrently, we carried out boat-based dolphin photo-identification to assess short-term fidelity to foraging around trawlers, and used photographic and genetic data to infer longer-term fidelity to the fishery. We estimated abundance at ≈ 2,300 dolphins (95% CI = 1,247-4,214) over the ≈ 25,880-km2 fishery. Mark-recapture estimates yielded 226 (SE = 38.5) dolphins associating with one trawler and some individuals photographed up to seven times over 12 capture periods. Moreover, photographic and genetic re-sampling over three years confirmed that some individuals show long-term fidelity to trawler-associated foraging. Our study presents the first abundance estimate for any Australian pelagic dolphin community and documents individuals associating with trawlers over days, months and years. Without trend data or correction factors for dolphin availability, the impact of bycatch on this dolphin population's conservation status remains unknown. These results should be taken into account by management agencies assessing the impact of fisheries-related mortality on this protected species

    Molecular ordering of precursor films during spreading of tiny liquid droplets

    Full text link
    In this work we address a novel feature of spreading dynamics of tiny liquid droplets on solid surfaces, namely the case where the ends of the molecules feel different interactions to the surface. We consider a simple model of dimers and short chain--like molecules which cannot form chemical bonds with the surface. We study the spreading dynamics by Molecular Dynamics techniques. In particular, we examine the microscopic structure of the time--dependent precursor film and find that in some cases it can exhibit a high degree of local order. This order persists even for flexible chains. Our results suggest the possibility of extracting information about molecular interactions from the structure of the precursor film.Comment: 4 pages, revtex, no figures, complete file available from ftp://rock.helsinki.fi/pub/preprints/tft/ or at http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys. Rev. E Rapid Comm.

    Optical absorption in the strong coupling limit of Eliashberg theory

    Full text link
    We calculate the optical conductivity of superconductors in the strong-coupling limit. In this anomalous limit the typical energy scale is set by the coupling energy, and other energy scales such as the energy of the bosons mediating the attraction are negligibly small. We find a universal frequency dependence of the optical absorption which is dominated by bound states and differs significantly from the weak coupling results. A comparison with absorption spectra of superconductors with enhanced electron-phonon coupling shows that typical features of the strong-coupling limit are already present at intermediate coupling.Comment: 10 pages, revtex, 4 uuencoded figure

    Scales of the Extra Dimensions and their Gravitational Wave Backgrounds

    Get PDF
    Circumstances are described in which symmetry breaking during the formation of our three-dimensional brane within a higher-dimensional space in the early universe excites mesoscopic classical radion or brane-displacement degrees of freedom and produces a detectable stochastic background of gravitational radiation. The spectrum of the background is related to the unification energy scale and the the sizes and numbers of large extra dimensions. It is shown that properties of the background observable by gravitational-wave observatories at frequencies f104f\approx 10^{-4} Hz to 10310^3 Hz contain information about unification on energy scales from 1 to 101010^{10} TeV, gravity propagating through extra-dimension sizes from 1 mm to 101810^{-18}mm, and the dynamical history and stabilization of from one to seven extra dimensions.Comment: 6 pages, Latex, 1 figure, submitted to Phys. Re

    Competition of charge, orbital, and ferromagnetic correlations in layered manganites

    Full text link
    The competition of charge, orbital, and ferromagnetic interactions in layered manganites is investigated by magneto-Raman scattering spectroscopy. We find that the colossal magnetoresistance effect in the layered compounds results from the interplay of the orbital and ferromagnetic double-exchange correlations. Inelastic scattering by charge-order fluctuations dominates the quasiparticle dynamics in the ferromagnetic-metal state. The scattering is suppressed at low frequencies, consistent with the opening of a charge-density wave pseudogap.Comment: 10 pages, 4 figure

    Closed Strings with Low Harmonics and Kinks

    Full text link
    Low-harmonic formulas for closed relativistic strings are given. General parametrizations are presented for the addition of second- and third-harmonic waves to the fundamental wave. The method of determination of the parametrizations is based upon a product representation found for the finite Fourier series of string motion in which the constraints are automatically satisfied. The construction of strings with kinks is discussed, including examples. A procedure is laid out for the representation of kinks that arise from self-intersection, and subsequent intercommutation, for harmonically parametrized cosmic strings.Comment: 39, CWRUTH-93-

    Spontaneous Coherence and Collective Modes in Double-Layer Quantum Dot Systems

    Full text link
    We study the ground state and the collective excitations of parabolically-confined double-layer quantum dot systems in a strong magnetic field. We identify parameter regimes where electrons form maximum density droplet states, quantum-dot analogs of the incompressible states of the bulk integer quantum Hall effect. In these regimes the Hartree-Fock approximation and the time-dependent Hartree-Fock approximations can be used to describe the ground state and collective excitations respectively. We comment on the relationship between edge excitations of dots and edge magneto-plasmon excitations of bulk double-layer systems.Comment: 20 pages (figures included) and also available at http://fangio.magnet.fsu.edu/~jhu/Paper/qdot_cond.ps, replaced to fix figure
    corecore