180 research outputs found
Analysis of the Y(4140) and related molecular states with QCD sum rules
In this article, we assume that there exist scalar , , and
molecular states, and study their masses using
the QCD sum rules. The numerical results indicate that the masses are about
above the corresponding ,
, and thresholds, the Y(4140) is unlikely a scalar molecular state. The scalar ,
, and molecular states maybe not exist, while the scalar , , and
molecular states maybe exist.Comment: 19 pages, 36 figures, slight revisio
Strange form factors in the context of SAMPLE, HAPPEX, and A4 experiments
The strange properties of the nucleon are investigated within the framework
of the SU(3) chiral quark-soliton model assuming isospin symmetry and applying
the symmetry conserving SU(3) quantization. We present the form factors
, and the electric and magnetic strange form
factors incorporating pion and kaon asymptotics. The results
show a fairly good agreement with the recent experimental data from the SAMPLE
and HAPPEX collaborations. We also present predictions for future measurements
including the A4 experiment at MAMI (Mainz).Comment: 10 pages with four figures. RevTeX4 is used. Few lines are changed.
Accepted for publication in Phys.Rev.
Future Directions in Parity Violation: From Quarks to the Cosmos
I discuss the prospects for future studies of parity-violating (PV)
interactions at low energies and the insights they might provide about open
questions in the Standard Model as well as physics that lies beyond it. I cover
four types of parity-violating observables: PV electron scattering; PV hadronic
interactions; PV correlations in weak decays; and searches for the permanent
electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions,
Milos, Greece (May, 2006); 10 page
Strange nucleon form factors in the perturbative chiral quark model
We apply the perturbative chiral quark model at one loop to calculate the
strange form factors of the nucleon. A detailed numerical analysis of the
strange magnetic moments and radii of the nucleon, and also the momentum
dependence of the form factors is presented.Comment: 18 pages, 6 figure
K* nucleon hyperon form factors and nucleon strangeness
A crucial input for recent meson hyperon cloud model estimates of the nucleon
matrix element of the strangeness current are the nucleon-hyperon-K* (NYK*)
form factors which regularize some of the arising loops. Prompted by new and
forthcoming information on these form factors from hyperon-nucleon potential
models, we analyze the dependence of the loop model results for the
strange-quark observables on the NYK* form factors and couplings. We find, in
particular, that the now generally favored soft N-Lambda-K* form factors can
reduce the magnitude of the K* contributions in such models by more than an
order of magnitude, compared to previous results with hard form factors. We
also discuss some general implications of our results for hadronic loop models.Comment: 9 pages, 8 figures, new co-author, discussion extended to the
momentum dependence of the strange vector form factor
Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input
In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from the network's background activity. This leads to ongoing, mostly subthreshold membrane dynamics that depends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics. Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that (i) mere noise inputs can drive the membrane potential into sustained, quasiperiodic oscillations (noise-driven oscillations), in the absence of a stimulus-derived, intraneural, or network pacemaker; (ii) adding hyperpolarizing to depolarizing synaptic input can increase neural activity (hyperpolarization-induced activity), in the absence of hyperpolarization-activated currents
Octet magnetic moments and the Coleman-Glashow sum rule violation in the chiral quark model
Baryon octet magnetic moments when calculated within the chiral quark model,
incorporating the orbital angular momentum as well as the quark sea
contribution through the Cheng-Li mechanism, not only show improvement over the
non relativistic quark model results but also gives a non zero value for the
right hand side of Coleman-Glashow sum rule. When effects due to spin-spin
forces between constituent quarks as well as `mass adjustments' due to
confinement are added, it leads to an excellent fit for the case of p,
\Sigma^+, \Xi^o and violation of Coleman-Glashow sum rule, whereas in almost
all the other cases the results are within 5% of the data.Comment: 5 RevTeX pages, accepted for publication in PRD(Rapid Communication
Parity violating target asymmetry in electron - proton scattering
We analyze the parity-violating (PV) components of the analyzing power in
elastic electron-proton scattering and discuss their sensitivity to the strange
quark contributions to the proton weak form factors. We point out that the
component of the analyzing power along the momentum transfer is independent of
the electric weak form factor and thus compares favorably with the PV beam
asymmetry for a determination of the strangeness magnetic moment. We also show
that the transverse component could be used for constraining the strangeness
radius. Finally, we argue that a measurement of both components could give
experimental information on the strangeness axial charge.Comment: 24 pages, Latex, 5 eps figures, submitted to Phys.Rev.
Z^* Resonances: Phenomenology and Models
We explore the phenomenology of, and models for, the Z^* resonances, the
lowest of which is now well established, and called the Theta. We provide an
overview of three models which have been proposed to explain its existence
and/or its small width, and point out other relevant predictions, and potential
problems, for each. The relation to what is known about KN scattering,
including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form
Deuteron Electroweak Disintegration
We study the deuteron electrodisintegration with inclusion of the neutral
currents focusing on the helicity asymmetry of the exclusive cross section in
coplanar geometry. We stress that a measurement of this asymmetry in the quasi
elastic region is of interest for an experimental determination of the weak
form factors of the nucleon, allowing one to obtain the parity violating
electron neutron asymmetry. Numerically, we consider the reaction at low
momentum transfer and discuss the sensitivity of the helicity asymmetry to the
strangeness radius and magnetic moment. The problems coming from the finite
angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail:
[email protected] , [email protected]
- …
