84 research outputs found

    Incursion of meteoric waters into the ductile regime in an active orogen

    Get PDF
    Rapid tectonic uplift on the Alpine Fault, New Zealand, elevates topography, regional geothermal gradients, and the depth to the brittle ductile transition, and drives fluid flow that influences deformation and mineralisation within the orogen. Oxygen and hydrogen stable isotopes, fluid inclusion and Fourier Transform Infrared (FT-IR) analyses of quartz from veins which formed at a wide range of depths, temperatures and deformation regimes identify fluid sources and the depth of penetration of meteoric waters. Most veins formed under brittle conditions and with isotope signatures (δ18OH2O = −9.0 to +8.7‰VSMOW and ‰ ) indicative of progressively rock-equilibrated meteoric waters. Two generations of quartz veins that post-date mylonitic foliation but endured further ductile deformation, and hence formation below the brittle to ductile transition zone ( depth), preserve included hydrothermal fluids with values between −84 and ‰ , indicating formation from meteoric waters. FT-IR analyses of these veins show no evidence of structural hydrogen release, precluding this as a source of low values. In contrast, the oxygen isotopic signal of these fluids has almost completely equilibrated with host rocks (δ18OH2O = +2.3 to +8.7‰). These data show that meteoric waters dominate the fluid phase in the rocks, and there is no stable isotopic requirement for the presence of metamorphic fluids during the precipitation of ductilely deformed quartz veins. This requires the penetration during orogenesis of meteoric waters into and possibly below the brittle to ductile transition zone

    The significance of heat transport by shallow fluid flow at an active plate boundary: the Southern Alps, New Zealand

    Get PDF
    Fluid flow can influence fault behavior. Here we quantify the role of groundwater heat advection in establishing the thermal structure of the Alpine Fault, a major tectonic boundary in southern New Zealand that accommodates most of the motion between the Australian and Pacific Plates. Convergence on the Alpine Fault has rapidly uplifted the Southern Alps, resulting in high geothermal gradients and a thin seismogenic zone. A new equilibrium temperature profile from the 818-m-deep Deep Fault Drilling Project 2B borehole has been interrogated using one-dimensional analytical models of fluid and rock advection. Models indicate a total heat flux of 720-mW m2 results from groundwater flow with Darcy velocities approximating to 7.8 × 1010 m s1. Groundwaters advect significantly more heat than rock advection in the shallow orogen (<6-km depth) and are the major control on the subsurface temperature field

    IODP Expeditions 309 and 312 drill an intact section of upper oceanic basement into gabbros

    Get PDF
    The Integrated Ocean Drilling Program's (IODP) Expeditions 309 and 312 successfully completed the first sampling of an intact section of upper oceanic crust, through lavas and the sheeted dikes into the uppermost gabbros. Hole 1256D, which was initiated on the Ocean Drilling Program's (ODP) Leg 206, now penetrates to >1500 mbsf and >1250 m sub-basement. The first gabbroic rocks were encountered at 1407 mbsf. Below this, the hole penetrates 3c100 m into a complex zone of fractionated gabbros intruded into contact metamorphosed dikes
    corecore