613 research outputs found

    Finite Temperature Effective Potential for the Abelian Higgs Model to the Order e4,λ2e^4,\lambda^2

    Full text link
    A complete calculation of the finite temperature effective potential for the abelian Higgs model to the order e4,λ2e^4,\lambda^2 is presented and the result is expressed in terms of physical parameters defined at zero temperature. The absence of a linear term is verified explicitly to the given order and proven to survive to all orders. The first order phase transition has weakened in comparison with lower order calculation, which shows up in a considerable decrease of the surface tension. The only difference from the original version is the splitting of some overlong lines causing problems with certain mailers.Comment: 13 pages LaTex ( figures not included , hardcopy available on request : [email protected] or t00heb@dhhdesy3 ) , DESY 93-08

    Sources of CP Violation in the Two-Higgs Doublet Model

    Get PDF
    Assuming CP violation arises solely through the Higgs potential, we develop the most general two-Higgs doublet model. There is no discrete symmetry that distinguishes the two Higgs bosons. It is assumed that an approximate global family symmetry sufficiently suppresses flavor-changing neutral scalar interactions. In addition to a CKM phase, neutral boson mixing, and superweak effects, there can be significant CP violation due to charged Higgs boson exchange. The value of Ï”â€Č/Ï”\epsilon'/\epsilon due to this last effect could be as large as in the standard model.Comment: 8 pages, RevTex, (appear in Phys. Rev. Lett. 73, (1994) 1762 ), CMU-HEP94-1

    An improved effective potential for electroweak phase transitions

    Full text link
    It is shown that improved potentials and corrected mass terms can be introduced by using a quadratic source term in the path integral construction for the effective action. The advantage of doing things this way is that we avoid ever having to deal with complex propagators in the loop expansion. The resulting effective action for electroweak phase transitions is similar to the usual results.Comment: 16 pages, NCL93-TP16, (REVTEX

    A Supersymmetric Effective Chiral Lagrangian

    Full text link
    We construct in a manifestly supersymmetric form the leading and subleading terms in momentum for an effective supersymmetric chiral Lagrangian in terms of complex pions and their superpartners. A soft supersymmetry breaking term is included and below the supersymmetry breaking scale the Lagrangian reduces to the usual bosonic chiral Lagrangian in terms of real pions.Comment: University of Southampton preprint no. SHEP 93/94-12 LATE

    Dirac Equation at Finite Temperature

    Full text link
    In this paper, we propose finite temperature Dirac equation, which can describe the quantum systems in an arbitrary temperature for a relativistic particle of spin-1/2. When the temperature T=0, it become Dirac equation. With the equation, we can study the relativistic quantum systems in an arbitrary temperature.Comment: arXiv admin note: text overlap with arXiv:1005.2751, arXiv:hep-ph/0004125, arXiv:hep-ph/0005272 by other author

    On the radial expansion of tubular structures in a quark gluon plasma

    Full text link
    We study the radial expansion of cylindrical tubes in a hot QGP. These tubes are treated as perturbations in the energy density of the system which is formed in heavy ion collisions at RHIC and LHC. We start from the equations of relativistic hydrodynamics in two spatial dimensions and cylindrical symmetry and perform an expansion of these equations in a small parameter, conserving the nonlinearity of the hydrodynamical formalism. We consider both ideal and viscous fluids and the latter are studied with a relativistic Navier-Stokes equation. We use the equation of state of the MIT bag model. In the case of ideal fluids we obtain a breaking wave equation for the energy density fluctuation, which is then solved numerically. We also show that, under certain assumptions, perturbations in a relativistic viscous fluid are governed by the Burgers equation. We estimate the typical expansion time of the tubes

    Soft lepton-flavor violation in a multi-Higgs-doublet seesaw model

    Get PDF
    We consider the Standard Model with an arbitrary number n_H of Higgs doublets and enlarge the lepton sector by adding to each lepton family \ell a right-handed neutrino singlet \nu_{\ell R}. We assume that all Yukawa-coupling matrices are diagonal, but the Majorana mass matrix M_R of the right-handed neutrino singlets is an arbitrary symmetric matrix, thereby introducing an explicit but soft violation of all lepton numbers. We investigate lepton-flavor-violating processes within this model. We pay particular attention to the large-m_R behavior of the amplitudes for these processes, where m_R is the order of magnitude of the matrix elements of M_R. While the amplitudes for processes like tau^- --> mu^- gamma and Z --> tau^+ mu^- drop as 1/m_R^2 for arbitrary n_H, processes like tau^- --> mu^- e^+ e^- and mu^- --> e^- e^+ e^- obey this power law only for n_H = 1. For n_H \geq 2, on the contrary, those amplitudes do not fall off when m_R increases, rather they converge towards constants. This non-decoupling of the right-handed scale occurs because of the sub-process ell^- --> ell'^- {S_b^0}^*, where S_b^0 is a neutral scalar which subsequently decays to e^+ e^-. That sub-process has a contribution from charged-scalar exchange which, for n_H \geq 2, does not decrease when m_R tends to infinity. We also perform a general study of the non-decoupling and argue that, after performing the limit m_R --> \infty and removing the \nu_R from the Lagrangian, our model becomes a multi-Higgs-doublet Standard Model with suppressed flavor-changing Yukawa couplings. Finally, we show that, with the usual assumptions about the mass scales in the seesaw mechanism, the branching ratios of all lepton-flavor-changing processes are several orders of magnitude smaller than present experimental limits.Comment: 46 pages, 2 figures, Revte

    Visible Sector Supersymmetry Breaking Revisited

    Full text link
    We revisit the possibility of "visible sector" SUSY models: models which are straightforward renormalizable extensions of the Minimal Supersymmetric Standard Model (MSSM), where SUSY is broken at tree level. Models of this type were abandoned twenty years ago due to phenomenological problems, which we review. We then demonstrate that it is possible to construct simple phenomenologically viable visible sector SUSY models. Such models are indeed very constrained, and have some inelegant features. They also have interesting and distinctive phenomenology. Our models predict light gauginos and very heavy squarks and sleptons. The squarks and sleptons may not be observable at the LHC. The LSP is a stable very light gravitino with a significant Higgsino admixture. The NLSP is mostly Bino. The Higgs boson is naturally heavy. Proton decay is sufficently and naturally suppressed, even for a cutoff scale as low as 10^8 GeV. The lightest particle of the O'Raifeartaigh sector (the LOP) is stable, and is an interesting cold dark matter candidate.Comment: 23 pages, 3 figures, LaTe

    Generalized Weinberg Sum Rules in Deconstructed QCD

    Full text link
    Recently, Son and Stephanov have considered an "open moose" as a possible dual model of a QCD-like theory of chiral symmetry breaking. In this note we demonstrate that although the Weinberg sum rules are satisfied in any such model, the relevant sums converge very slowly and in a manner unlike QCD. Further, we show that such a model satisfies a set of generalized sum rules. These sum rules can be understood by looking at the operator product expansion for the correlation function of chiral currents, and correspond to the absence of low-dimension gauge-invariant chiral symmetry breaking condensates. These results imply that, regardless of the couplings and F-constants chosen, the open moose is not the dual of any QCD-like theory of chiral symmetry breaking. We also show that the generalized sum rules can be "solved", leading to a compact expression for the difference of vector- and axial-current correlation functions. This expression allows for a simple formula for the S parameter (L_10), which implies that S is always positive and of order one in any (unitary) open linear moose model. Therefore the S parameter is positive and order one in any "Higgsless model" based on the continuum limit of a linear moose regardless of the warping or position-dependent gauge-coupling chosen.Comment: 12 pages, 5 eps figures; reference to overlapping work adde

    A Curvature Principle for the interaction between universes

    Full text link
    We propose a Curvature Principle to describe the dynamics of interacting universes in a multi-universe scenario and show, in the context of a simplified model, how interaction drives the cosmological constant of one of the universes toward a vanishingly small value. We also conjecture on how the proposed Curvature Principle suggests a solution for the entropy paradox of a universe where the cosmological constant vanishes.Comment: Essay selected for an honorable mention by the Gravity Research Foundation, 2007. Plain latex, 8 page
    • 

    corecore