536 research outputs found
Domain wall mobility in nanowires: transverse versus vortex walls
The motion of domain walls in ferromagnetic, cylindrical nanowires is
investigated numerically by solving the Landau-Lifshitz-Gilbert equation for a
classical spin model in which energy contributions from exchange, crystalline
anisotropy, dipole-dipole interaction, and a driving magnetic field are
considered. Depending on the diameter, either transverse domain walls or vortex
walls are found. The transverse domain wall is observed for diameters smaller
than the exchange length of the given material. Here, the system behaves
effectively one-dimensional and the domain wall mobility agrees with a result
derived for a one-dimensional wall by Slonczewski. For low damping the domain
wall mobility decreases with decreasing damping constant. With increasing
diameter, a crossover to a vortex wall sets in which enhances the domain wall
mobility drastically. For a vortex wall the domain wall mobility is described
by the Walker-formula, with a domain wall width depending on the diameter of
the wire. The main difference is the dependence on damping: for a vortex wall
the domain wall mobility can be drastically increased for small values of the
damping constant up to a factor of .Comment: 5 pages, 6 figure
Recommended from our members
Intense synchrotron radiation from a magnetically compressed relativistic electron layer
Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/sec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation. (auth
A microscopic 2D lattice model of dimer granular compaction with friction
We study by Monte Carlo simulation the compaction dynamics of hard dimers in
2D under the action of gravity, subjected to vertical and horizontal shaking,
considering also the case in which a friction force acts for horizontal
displacements of the dimers. These forces are modeled by introducing effective
probabilities for all kinds of moves of the particles. We analyze the dynamics
for different values of the time during which the shaking is applied to
the system and for different intensities of the forces. It turns out that the
density evolution in time follows a stretched exponential behavior if is
not very large, while a power law tail develops for larger values of .
Moreover, in the absence of friction, a critical value exists which
signals the crossover between two different regimes: for the
asymptotic density scales with a power law of , while for
it reaches logarithmically a maximal saturation value. Such behavior smears out
when a finite friction force is present. In this situation the dynamics is
slower and lower asymptotic densities are attained. In particular, for
significant friction forces, the final density decreases linearly with the
friction coefficient. We also compare the frictionless single tap dynamics to
the sequential tapping dynamics, observing in the latter case an inverse
logarithmic behavior of the density evolution, as found in the experiments.Comment: 10 pages, 15 figures, to be published in Phys. Rev.
Linear response of vibrated granular systems to sudden changes in the vibration intensity
The short-term memory effects recently observed in vibration-induced
compaction of granular materials are studied. It is shown that they can be
explained by means of quite plausible hypothesis about the mesoscopic
description of the evolution of the system. The existence of a critical time
separating regimes of ``anomalous'' and ``normal'' responses is predicted. A
simple model fitting into the general framework is analyzed in the detail. The
relationship between this work and previous studies is discussed.Comment: 10 pages, 6 figures; fixed errata, updtated reference
Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars
Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model
incorporating thermal fluctuations and dipole-dipole interactions (calculated
by the Fast Multipole Method) are presented for systems composed of nanoscale
iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated
under sinusoidally varying fields are obtained, while the coercive field is
estimated to be 1979 14 Oe using linear field sweeps at T=0 K. Thermal
effects are essential to the relaxation of magnetization trapped in a
metastable orientation, such as happens after a rapid reversal of an external
magnetic field less than the coercive value. The distribution of switching
times is compared to a simple analytic theory that describes reversal with
nucleation at the ends of the nanomagnets. Results are also presented for
arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a
separation of 300 nm, where the field from neighboring pillars is only 1
Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of
numerical technique
Compaction of Rods: Relaxation and Ordering in Vibrated, Anisotropic Granular Material
We report on experiments to measure the temporal and spatial evolution of
packing arrangements of anisotropic, cylindrical granular material, using
high-resolution capacitive monitoring. In these experiments, the particle
configurations start from an initially disordered, low-packing-fraction state
and under vertical vibrations evolve to a dense, highly ordered, nematic state
in which the long particle axes align with the vertical tube walls. We find
that the orientational ordering process is reflected in a characteristic, steep
rise in the local packing fraction. At any given height inside the packing, the
ordering is initiated at the container walls and proceeds inward. We explore
the evolution of the local as well as the height-averaged packing fraction as a
function of vibration parameters and compare our results to relaxation
experiments conducted on spherically shaped granular materials.Comment: 9 pages incl. 7 figure
Velocity-force characteristics of a driven interface in a disordered medium
Using a dynamic functional renormalization group treatment of driven elastic
interfaces in a disordered medium, we investigate several aspects of the
creep-type motion induced by external forces below the depinning threshold
: i) We show that in the experimentally important regime of forces
slightly below the velocity obeys an Arrhenius-type law
with an effective energy barrier
vanishing linearly when f approaches the threshold . ii) Thermal
fluctuations soften the pinning landscape at high temperatures. Determining the
corresponding velocity-force characteristics at low driving forces for internal
dimensions d=1,2 (strings and interfaces) we find a particular non-Arrhenius
type creep involving the reduced threshold
force alone. For d=3 we obtain a similar v-f characteristic which is,
however, non-universal and depends explicitly on the microscopic cutoff.Comment: 9 pages, RevTeX, 3 postscript figure
Phenomenological glass model for vibratory granular compaction
A model for weakly excited granular media is derived by combining the free
volume argument of Nowak et al. [Phys. Rev. E 57, 1971 (1998)] and the
phenomenological model for supercooled liquids of Adam and Gibbs [J. Chem.
Phys. 43, 139 (1965)]. This is made possible by relating the granular
excitation parameter \Gamma, defined as the peak acceleration of the driving
pulse scaled by gravity, to a temperature-like parameter \eta(\Gamma). The
resulting master equation is formally identical to that of Bouchaud's trap
model for glasses [J. Phys. I 2, 1705 (1992)]. Analytic and simulation results
are shown to compare favourably with a range of known experimental behaviour.
This includes the logarithmic densification and power spectrum of fluctuations
under constant \eta, the annealing curve when \eta is varied cyclically in
time, and memory effects observed for a discontinuous shift in \eta. Finally,
we discuss the physical interpretation of the model parameters and suggest
further experiments for this class of systems.Comment: 2 references added; some figure labels tweaked. To appear in PR
Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice
Motivated by the large strain shear of loose granular materials we introduced
a model which consists of consecutive optimization and restructuring steps
leading to a self organization of a density field. The extensive connections to
other models of statistical phyics are discussed. We investigate our model on a
hierarchical lattice which allows an exact asymptotic renormalization
treatment. A surprisingly close analogy is observed between the simulation
results on the regular and the hierarchical lattices. The dynamics is
characterized by the breakdown of ergodicity, by unusual system size effects in
the development of the average density as well as by the age distribution, the
latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also:
cond-mat/020920
Instanton Contribution to the Quark Form Factor
The nonperturbative effects in the quark form factor are considered in the
Wilson loop formalism. The properties of the Wilson loops with cusp
singularities are studied taking into account the perturbative and
nonperturbative contributions, where the latter are considered within the
framework of the instanton liquid model. For the integration path corresponding
to this form factor -- the angle with infinite sides -- the explicit expression
for the vacuum expectation value of the Wilson operator is found to leading
order. The calculations are performed in the weak-field limit for the instanton
vacuum contribution and compared with the one- and two-loop order results for
the perturbative part. It is shown that the instantons produce the powerlike
corrections to the perturbative result, which are comparable in magnitude with
the perturbative part at the scale of order of the inverse average instanton
size. It is demonstrated that the instanton contributions to the quark form
factor are exponentiated to high orders in the small instanton density
parameter.Comment: Version coincident with the journal publication. LaTeX, 15 pages, 1
figur
- …