11 research outputs found

    International Lower Limb Collaborative (INTELLECT) study : a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF

    The fundamental operation mechanisms of nc-SiO<sub>X≥0</sub>:H based tunnel recombination junctions revealed

    No full text
    Two terminal multi-junction (MJ) photovoltaic (PV) devices are well established concepts to increase the solar-to-electrical power conversion in reference to single PV junctions. In multi-junction PV devices two consecutive sub-cells are interconnected using a tunnel recombination junction (TRJ) in which the light excited holes of one sub-cell recombine with the light excited electrons of the other sub cell. An ideal TRJ is an ohmic contact with non-rectifying behaviour. TRJ's based on p- and n-doped silicon-oxides have been successfully applied in a variety of hybrid multi-junction PV devices in which tunnelling and trap-assisted tunnelling over width of 5–20 nm rules the TRJ's recombination kinetics. In this contribution the qualitative fundamental working principles of tunnel recombination junctions based on p- and n-doped silicon and silicon-oxide alloys are revealed using both electrical modelling and experiments based on a unique set of tandem lab cells (four types based on four different PV materials) combined with structural variations in TRJ architectures. The study results in design rules for the integration of silicon-oxide based TRJ's and provides fundamental insights into the sensitivity of the electrical performance of the TRJ's to doping concentrations, to alignment of the conduction and valence bands of consecutive sub-cells, to the nature of interface defects, to the growth of amorphous and crystalline phases and its dependence on substrate or seed layers and to the nanoscale thicknesses of the TRJ layers.Photovoltaic Materials and Device

    Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods

    No full text
    Aluminium (Al) toxicity is one of the major limiting factors for barley production on acid soils. It inhibits root cell division and elongation, thus reducing water and nutrient uptake, consequently resulting in poor plant growth and yield. Plants tolerate Al either through external resistance mechanisms, by which Al is excluded from plant tissues or internal tolerance mechanisms, conferring the ability of plants to tolerate Al ion in the plant symplasm where Al that has permeated the plasmalemma is sequestered or converted into an innocuous form. Barley is considered to be most sensitive to Al toxicity among cereal species. Al tolerance in barley has been assessed by several methods, such as nutrient solution culture, soil bioassay and field screening. Genetic and molecular mapping research has shown that Al tolerance in barley is controlled by a single locus which is located on chromosome 4H. Molecular markers linked with Al tolerance loci have been identified and validated in a range of diverse populations. This paper reviews the (1) screening methods for evaluating Al tolerance, (2) genetics and (3) mechanisms underlying Al tolerance in barley

    Remediation of Metal- and Radionuclides-Contaminated Soils by In Situ Stabilization Techniques

    No full text
    corecore