297 research outputs found

    Competing density-wave orders in a one-dimensional hard-boson model

    Get PDF
    We describe the zero-temperature phase diagram of a model of bosons, occupying sites of a linear chain, which obey a hard-exclusion constraint: any two nearest-neighbor sites may have at most one boson. A special case of our model was recently proposed as a description of a ``tilted'' Mott insulator of atoms trapped in an optical lattice. Our quantum Hamiltonian is shown to generate the transfer matrix of Baxter's hard-square model. Aided by exact solutions of a number of special cases, and by numerical studies, we obtain a phase diagram containing states with long-range density-wave order with period 2 and period 3, and also a floating incommensurate phase. Critical theories for the various quantum phase transitions are presented. As a byproduct, we show how to compute the Luttinger parameter in integrable theories with hard-exclusion constraints.Comment: 16 page

    Order Parameters of the Dilute A Models

    Get PDF
    The free energy and local height probabilities of the dilute A models with broken \Integer_2 symmetry are calculated analytically using inversion and corner transfer matrix methods. These models possess four critical branches. The first two branches provide new realisations of the unitary minimal series and the other two branches give a direct product of this series with an Ising model. We identify the integrable perturbations which move the dilute A models away from the critical limit. Generalised order parameters are defined and their critical exponents extracted. The associated conformal weights are found to occur on the diagonal of the relevant Kac table. In an appropriate regime the dilute A3_3 model lies in the universality class of the Ising model in a magnetic field. In this case we obtain the magnetic exponent δ=15\delta=15 directly, without the use of scaling relations.Comment: 53 pages, LaTex, ITFA 93-1

    Vertex Models on Feynman Diagrams

    Get PDF
    The statistical mechanics of spin models, such as the Ising or Potts models, on generic random graphs can be formulated economically by considering the N --> 1 limit of Hermitian matrix models. In this paper we consider the N --> 1 limit in complex matrix models, which describes vertex models of different sorts living on random graphs. From the graph theoretic perspective one is using matrix model and field theory inspired methods to count various classes of directed graphs. We also make some remarks on vertex models on planar random graphs (the N --> infinity limit) where the resulting matrix models are not generally soluble using currently known methods. Nonetheless, some particular cases may be mapped onto known models and hence solved.Comment: 10 Pages text (LaTeX), 4 eps figure

    Microstructure modelling of hot deformation of Al–1%Mg alloy

    Get PDF
    This study presents the application of the finite elementmethod and intelligent systems techniques to the prediction of microstructural mapping for aluminium alloys. Here, the material within each finite element is defined using a hybrid model. The hybrid model is based on neuro-fuzzy and physically based components and it has been combined with the finite element technique. The model simulates the evolution of the internal state variables (i.e. dislocation density, subgrain size and subgrain boundary misorientation) and their effect on the recrystallisation behaviour of the stock. This paper presents the theory behind the model development, the integration between the numerical techniques, and the application of the technique to a hot rolling operation using aluminium, 1 wt% magnesium alloy. Furthermore, experimental data from plane strain compression (PSC) tests and rolling are used to validate the modelling outcome. The results show that the recrystallisation kinetics agree well with the experimental results for different annealing times. This hybrid approach has proved to be more accurate than conventional methods using empirical equations

    Dgsos on DTRS

    Full text link
    We perform simulations of a discrete gaussian solid on solid (DGSOS) model on dynamical ϕ3\phi^3 graphs, which is equivalent to coupling the model to 2d quantum gravity, using the cluster algorithms recently developed by Evertz et.al.for use on fixed lattices. We find evidence from the growth of the width-squared in the rough phase of KT-like behaviour, which is consistent with theoretical expectations. We also investigate the cluster statistics, dynamical critical exponent and lattice properties, and compare these with the dual XY model.Comment: 9 pages, COLO-HEP-32

    Geometric effects on T-breaking in p+ip and d+id superconductors

    Full text link
    Superconducting order parameters that change phase around the Fermi surface modify Josephson tunneling behavior, as in the phase-sensitive measurements that confirmed dd order in the cuprates. This paper studies Josephson coupling when the individual grains break time-reversal symmetry; the specific cases considered are p±ipp \pm ip and d±idd \pm id, which may appear in Sr2_2RuO4_4 and Nax_xCoO2_2 \cdot (H2_2O)y_y respectively. TT-breaking order parameters lead to frustrating phases when not all grains have the same sign of time-reversal symmetry breaking, and the effects of these frustrating phases depend sensitively on geometry for 2D arrays of coupled grains. These systems can show perfect superconducting order with or without macroscopic TT-breaking. The honeycomb lattice of superconducting grains has a superconducting phase with no spontaneous breaking of TT but instead power-law correlations. The superconducting transition in this case is driven by binding of fractional vortices, and the zero-temperature criticality realizes a generalization of Baxter's three-color model.Comment: 8 page

    Study of Percolative Transitions with First-Order Characteristics in the Context of CMR Manganites

    Full text link
    The unusual magneto-transport properties of manganites are widely believed to be caused by mixed-phase tendencies and concomitant percolative processes. However, dramatic deviations from "standard" percolation have been unveiled experimentally. Here, a semi-phenomenological description of Mn oxides is proposed based on coexisting clusters with smooth surfaces, as suggested by Monte Carlo simulations of realistic models for manganites, also briefly discussed here. The present approach produces fairly abrupt percolative transitions and even first-order discontinuities, in agreement with experiments. These transitions may describe the percolation that occurs after magnetic fields align the randomly oriented ferromagnetic clusters believed to exist above the Curie temperature in Mn oxides. In this respect, part of the manganite phenomenology could belong to a new class of percolative processes triggered by phase competition and correlations.Comment: 4 pages, 4 eps figure

    Ising Spins on Thin Graphs

    Get PDF
    The Ising model on ``thin'' graphs (standard Feynman diagrams) displays several interesting properties. For ferromagnetic couplings there is a mean field phase transition at the corresponding Bethe lattice transition point. For antiferromagnetic couplings the replica trick gives some evidence for a spin glass phase. In this paper we investigate both the ferromagnetic and antiferromagnetic models with the aid of simulations. We confirm the Bethe lattice values of the critical points for the ferromagnetic model on ϕ3\phi^3 and ϕ4\phi^4 graphs and examine the putative spin glass phase in the antiferromagnetic model by looking at the overlap between replicas in a quenched ensemble of graphs. We also compare the Ising results with those for higher state Potts models and Ising models on ``fat'' graphs, such as those used in 2D gravity simulations.Comment: LaTeX 13 pages + 9 postscript figures, COLO-HEP-340, LPTHE-Orsay-94-6

    Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. V. Further Results for the Square-Lattice Chromatic Polynomial

    Get PDF
    We derive some new structural results for the transfer matrix of square-lattice Potts models with free and cylindrical boundary conditions. In particular, we obtain explicit closed-form expressions for the dominant (at large |q|) diagonal entry in the transfer matrix, for arbitrary widths m, as the solution of a special one-dimensional polymer model. We also obtain the large-q expansion of the bulk and surface (resp. corner) free energies for the zero-temperature antiferromagnet (= chromatic polynomial) through order q^{-47} (resp. q^{-46}). Finally, we compute chromatic roots for strips of widths 9 <= m <= 12 with free boundary conditions and locate roughly the limiting curves.Comment: 111 pages (LaTeX2e). Includes tex file, three sty files, and 19 Postscript figures. Also included are Mathematica files data_CYL.m and data_FREE.m. Many changes from version 1: new material on series expansions and their analysis, and several proofs of previously conjectured results. Final version to be published in J. Stat. Phy
    corecore