75 research outputs found

    The Electroweak Phase Transition on Orbifolds with Gauge-Higgs Unification

    Full text link
    The dynamics of five dimensional Wilson line phases at finite temperature is studied in the one-loop approximation. We show that at temperatures of order T \sim 1/L, where L is the length of the compact space, the gauge symmetry is always restored and the electroweak phase transition appears to be of first order. Particular attention is devoted to the study of a recently proposed five dimensional orbifold model (on S1/Z2) where the Wilson line phase is identified with the Higgs field (gauge-Higgs unification). Interestingly enough, an estimate of the leading higher-loop ``daisy'' (or ``ring'') diagram contributions to the effective potential in a simple five dimensional model, seems to suggest that the electroweak phase transition can be studied in perturbation theory even for Higgs masses above the current experimental limit of 114 GeV. The transition is still of first order for such values of the Higgs mass. If large localized gauge kinetic terms are present, the transition might be strong enough to give baryogenesis at the electroweak transition.Comment: 35 pages, 34 figures; v2: discussion on higher loop contributions improved, two figures added, minor correction

    Stable Q-balls from extra dimensions

    Get PDF
    Given a bulk scalar field with sufficient self-interactions in a higher dimensional spacetime, it is shown that the continuous symmetries in four dimensions, induced by the topological structure of the compact manifold, naturally lead to formation of stable nontopological solitons of Q-ball type. The mass per unit charge inside the soliton is bounded by the size of the extra dimensions, and it is thus stable with respect to decaying into excited levels of all bulk fields, irrespective of their bulk masses. A familiar example is the Standard Model in the bulk, where the Kaluza-Klein levels of the Higgs boson form a stable Q-ball. These stable solitons are natural candidates for the dark matter in the Universe.Comment: 10 pp, added references, expanded discussion of chiral matter; journal versio

    Radion Stabilization in Compact Hyperbolic Extra Dimensions

    Full text link
    We consider radion stabilization in hyperbolic brane-world scenarios. We demonstrate that in the context of Einstein gravity, matter fields which stabilize the extra dimensions must violate the null energy condition. This result is shown to hold even allowing for FRW-like expansion on the brane. In particular, we explicitly demonstrate how one putative source of stabilizing matter fails to work, and how others violate the above condition. We speculate on a number of ways in which we may bypass this result, including the effect of Casimir energy in these spaces. A brief discussion of supersymmetry in these backgrounds is also given.Comment: 16 pages, 1 figur

    Explicit CP violation in the Dine-Seiberg-Thomas model

    Full text link
    The possibility of explicit CP violation is studied in a supersymmetric model proposed by Dine, Seiberg, and Thomas, with two effective dimension-five operators. The explicit CP violation may be triggered by complex phases in the coefficients for the dimension-five operators in the Higgs potential, and by a complex phase in the scalar top quark masses. Although the scenario of explicit CP violation is found to be inconsistent with the experimental data at LEP2 at the tree level, it may be possible at the one-loop level. For a reasonable parameter space, the masses of the neutral Higgs bosons and their couplings to a pair of ZZ bosons are consistent with the LEP2 data, at the one-loop level.Comment: 5 pages, 2 figure

    Gravity and Matter in Extra Dimensions

    Full text link
    In this paper, we derive from the viewpoint of the effective 4D theory the interaction terms between linearized gravity propagating in N>= 2 large extra dimensions and matter propagating into one extra dimension. This generalizes known results for the interactions between gravity and 4D matter in ADD-type models. Although we assume that matter is described by an Universal Extra Dimensions (UED) scenario (with all fields propagating into the fifth dimension), we present our results in a general form that can be easily adapted to various other scenarios of matter distribution. We then apply our results to the UED model on a fat brane and consider some phenomenological applications. Among these are the computation of the gravitational decay widths of the matter KK excitations and the effect the width of the brane has on the interactions of gravity with Standard Model particles. We also estimate the cross-section for producing single KK excitations at colliders through KK number-violating gravitational interaction.Comment: 21 pages, 6 figures, Late

    Towards a Stringy Resolution of the Cosmological Singularity

    Full text link
    We study cosmological solutions to the low-energy effective action of heterotic string theory including possible leading order α′\alpha' corrections and a potential for the dilaton. We consider the possibility that including such stringy corrections can resolve the initial cosmological singularity. Since the exact form of these corrections is not known the higher-derivative terms are constructed so that they vanish when the metric is de Sitter spacetime. The constructed terms are compatible with known restrictions from scattering amplitude and string worldsheet beta-function calculations. Analytic and numerical techniques are used to construct a singularity-free cosmological solution. At late times and low-curvatures the metric is asymptotically Minkowski and the dilaton is frozen. In the high-curvature regime the universe enters a de Sitter phase.Comment: 6 pages, 2 Figures; minor revisions; references added; REVTeX 4; version to appear in Phys. Rev.

    Cosmological bounds on large extra dimensions from non-thermal production of Kaluza-Klein modes

    Full text link
    The existing cosmological constraints on theories with large extra dimensions rely on the thermal production of the Kaluza-Klein modes of gravitons and radions in the early Universe. Successful inflation and reheating, as well as baryogenesis, typically requires the existence of a TeV-scale field in the bulk, most notably the inflaton. The non-thermal production of KK modes with masses of order 100 GeV accompanying the inflaton decay sets the lower bounds on the fundamental scale M_*. For a 1 TeV inflaton, the late decay of these modes distort the successful predictions of Big Bang Nucleosynthesis unless M_*> 35, 13, 7, 5 and 3 TeV for 2, 3, 4, 5 and 6 extra dimensions, respectively. This improves the existing bounds from cosmology on M_* for 4, 5 and 6 extra dimensions. Even more stringent bounds are derived for a heavier inflaton.Comment: 17 pages, latex, 4 figure

    Interaction of Low - Energy Induced Gravity with Quantized Matter and Phase Transition Induced by Curvature

    Full text link
    At high energy scale the only quantum effect of any asymptotic free and asymptotically conformal invariant GUT is the trace anomaly of the energy-momentum tensor. Anomaly generates the new degree of freedom, that is propagating conformal factor. At lower energies conformal factor starts to interact with scalar field because of the violation of conformal invariance. We estimate the effect of such an interaction and find the running of the nonminimal coupling from conformal value 16\frac{1}{6} to 00. Then we discuss the possibility of the first order phase transition induced by curvature in a region close to the stable fixed point and calculate the induced values of Newtonian and cosmological constants.Comment: 11 pages, LaTex, KEK-TH-397-KEK Preprint 94-3

    Core Structure of Global Vortices in Brane World Models

    Full text link
    We study analytically and numerically the core structure of global vortices forming on topologically deformed brane-worlds with a single toroidally compact extra dimension. It is shown that for an extra dimension size larger than the scale of symmetry breaking the magnitude of the complex scalar field at the vortex center can dynamically remain non-zero. Singlevaluedness and regularity are not violated. Instead, the winding escapes to the extra dimension at the vortex center. As the extra dimension size decreases the field magnitude at the core dynamically decreases also and in the limit of zero extra dimension size we reobtain the familiar global vortex solution. Extensions to other types of defects and gauged symmetries are also discussed.Comment: 6 two column pages, 3 figure
    • …
    corecore