3,080 research outputs found

    Radio Source Heating in the ICM: The Example of Cygnus A

    Full text link
    One of the most promising solutions for the cooling flow problem involves energy injection from the central AGN. However it is still not clear how collimated jets can heat the ICM at large scale, and very little is known concerning the effect of radio lobe expansion as they enter into pressure equilibrium with the surrounding cluster gas. Cygnus A is one of the best examples of a nearby powerful radio galaxy for which the synchrotron emitting plasma and thermal emitting intra-cluster medium can be mapped in fine detail, and previous observations have inferred possible shock structure at the location of the cocoon. We use new XMM-Newton observations of Cygnus A, in combination with deep Chandra observations, to measure the temperature of the intra-cluster medium around the expanding radio cavities. We investigate how inflation of the cavities may relate to shock heating of the intra-cluster gas, and whether such a mechanism is sufficient to provide enough energy to offset cooling to the extent observed.Comment: To appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany), Eds. H. Boehringer, G.W. Pratt, A. Finoguenov, P. Schuecker, Springer-Verlag series "ESO Astrophysics Symposia", p.101, in press. 8 pages, 3 multiple figure

    Actors that Unify Threads and Events

    Get PDF
    There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer. In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implemented our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM

    Hidden Symmetries and their Consequences in t2gt_{2g} Cubic Perovskites

    Full text link
    The five-band Hubbard model for a dd band with one electron per site is a model which has very interesting properties when the relevant ions are located at sites with high (e. g. cubic) symmetry. In that case, if the crystal field splitting is large one may consider excitations confined to the lowest threefold degenerate t2gt_{2g} orbital states. When the electron hopping matrix element (tt) is much smaller than the on-site Coulomb interaction energy (UU), the Hubbard model can be mapped onto the well-known effective Hamiltonian (at order t2/Ut^{2}/U) derived by Kugel and Khomskii (KK). Recently we have shown that the KK Hamiltonian does not support long range spin order at any nonzero temperature due to several novel hidden symmetries that it possesses. Here we extend our theory to show that these symmetries also apply to the underlying three-band Hubbard model. Using these symmetries we develop a rigorous Mermin-Wagner construction, which shows that the three-band Hubbard model does not support spontaneous long-range spin order at any nonzero temperature and at any order in t/Ut/U -- despite the three-dimensional lattice structure. Introduction of spin-orbit coupling does allow spin ordering, but even then the excitation spectrum is gapless due to a subtle continuous symmetry. Finally we showed that these hidden symmetries dramatically simplify the numerical exact diagonalization studies of finite clusters.Comment: 26 pages, 3 figures, 520 KB, submitted Phys. Rev.

    Softening Transitions with Quenched 2D Gravity

    Get PDF
    We perform extensive Monte Carlo simulations of the 10-state Potts model on quenched two-dimensional Φ3\Phi^3 gravity graphs to study the effect of quenched connectivity disorder on the phase transition, which is strongly first order on regular lattices. The numerical data provides strong evidence that, due to the quenched randomness, the discontinuous first-order phase transition of the pure model is softened to a continuous transition.Comment: 3 pages, LaTeX + 1 postscript figure. Talk presented at LATTICE96(other models). See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm

    Landau Expansion for the Kugel-Khomskii t2gt_{2g} Hamiltonian

    Get PDF
    The Kugel-Khomskii (KK) Hamiltonian for the titanates describes spin and orbital superexchange interactions between d1d^1 ions in an ideal perovskite structure in which the three t2gt_{2g} orbitals are degenerate in energy and electron hopping is constrained by cubic site symmetry. In this paper we implement a variational approach to mean-field theory in which each site, ii, has its own n×nn \times n single-site density matrix \rhov(i), where nn, the number of allowed single-particle states, is 6 (3 orbital times 2 spin states). The variational free energy from this 35 parameter density matrix is shown to exhibit the unusual symmetries noted previously which lead to a wavevector-dependent susceptibility for spins in α\alpha orbitals which is dispersionless in the qαq_\alpha-direction. Thus, for the cubic KK model itself, mean-field theory does not provide wavevector `selection', in agreement with rigorous symmetry arguments. We consider the effect of including various perturbations. When spin-orbit interactions are introduced, the susceptibility has dispersion in all directions in q{\bf q}-space, but the resulting antiferromagnetic mean-field state is degenerate with respect to global rotation of the staggered spin, implying that the spin-wave spectrum is gapless. This possibly surprising conclusion is also consistent with rigorous symmetry arguments. When next-nearest-neighbor hopping is included, staggered moments of all orbitals appear, but the sum of these moments is zero, yielding an exotic state with long-range order without long-range spin order. The effect of a Hund's rule coupling of sufficient strength is to produce a state with orbital order.Comment: 20 pages, 5 figures, submitted to Phys. Rev. B (2003

    Beam-Based Alignment of the NuMI Target Station Components at FNAL

    Get PDF
    The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.Comment: higher resolution figures available on Fermilab Preprint Server (see SPIRES entry), accepted for publication in Nucl. Instr. and Meth.

    Study of Neutron-Induced Ionization in Helium and Argon Chamber Gases

    Full text link
    Ion chambers used to monitor the secondary hadron and tertiary muon beam in the NuMI neutrino beamline will be exposed to background particles, including low energy neutrons produced in the beam dump. To understand these backgrounds, we have studied Helium- and Argon-filled ionization chambers exposed to intense neutron fluxes from PuBe neutron sources (En=110E_n=1-10 MeV). The sources emit about 108^8 neutrons per second. The number of ion pairs in the chamber gas volume per incident neutron is derived. While limited in precision because of a large gamma ray background from the PuBe sources, our results are consistent with the expectation that the neutrons interact purely elastically in the chamber gas.Comment: accepted for publication in NIM

    Symmetry breaking due to Dzyaloshinsky-Moriya interactions in the kagome lattice

    Full text link
    Due to the particular geometry of the kagom\'e lattice, it is shown that antisymmetric Dzyaloshinsky-Moriya interactions are allowed and induce magnetic ordering. The symmetry of the obtained low temperature magnetic phases are studied through mean field approximation and classical Mont\'e Carlo simulations. A phase diagram relating the geometry of the interaction and the ordering temperature has been derived. The order of magnitude of the anisotropies due to Dzyaloshinsky-Moriya interactions are more important than in non-frustrated magnets, which enhances its appearance in real systems. Application to the jarosites compounds is proposed. In particular, the low temperature behaviors of the Fe and Cr-based jarosites are correctly described by this model.Comment: 6 (revtex4) twocolumn pages, 6 .eps figures. Submitted to Phys. Rev.

    The Kagome Antiferromagnet with Defects: Satisfaction, Frustration, and Spin Folding in a Random Spin System

    Full text link
    It is shown that site disorder induces noncoplanar states, competing with the thermal selection of coplanar states, in the nearest neighbor, classical kagome Heisenberg antiferromagnet (AFM). For weak disorder, it is found that the ground state energy is the sum of energies of separately satisfied triangles of spins. This implies that disorder does not induce conventional spin glass behavior. A transformation is presented, mapping ground state spin configurations onto a folded triangular sheet (a new kind of ``spin origami'') which has conformations similar to those of tethered membranes.Comment: REVTEX, 11 pages + 3 pictures upon reques
    corecore