40,415 research outputs found

    Gravitational collapse of magnetized clouds II. The role of Ohmic dissipation

    Full text link
    We formulate the problem of magnetic field dissipation during the accretion phase of low-mass star formation, and we carry out the first step of an iterative solution procedure by assuming that the gas is in free-fall along radial field lines. This so-called ``kinematic approximation'' ignores the back reaction of the Lorentz force on the accretion flow. In quasi steady-state, and assuming the resistivity coefficient to be spatially uniform, the problem is analytically soluble in terms of Legendre's polynomials and confluent hypergeometric functions. The dissipation of the magnetic field occurs inside a region of radius inversely proportional to the mass of the central star (the ``Ohm radius''), where the magnetic field becomes asymptotically straight and uniform. In our solution, the magnetic flux problem of star formation is avoided because the magnetic flux dragged in the accreting protostar is always zero. Our results imply that the effective resistivity of the infalling gas must be higher by several orders of magnitude than the microscopic electric resistivity, to avoid conflict with measurements of paleomagnetism in meteorites and with the observed luminosity of regions of low-mass star formation.Comment: 20 pages, 4 figures, The Astrophysical Journal, in pres

    In-Beam Background Suppression Shield

    Get PDF
    The long (3ms) proton pulse of the European Spallation Source (ESS) gives rise to unique and potentially high backgrounds for the instrument suite. In such a source an instrument capabilities will be limited by it's Signal to Noise (S/N) ratio. The instruments with a direct view of the moderator, which do not use a bender to help mitigate the fast neutron background, are the most challenging. For these beam lines we propose the innovative shielding of placing blocks of material directly into the guide system, which allow a minimum attenuation of the cold and thermal fluxes relative to the background suppression. This shielding configuration has been worked into a beam line model using Geant4. We study particularly the advantages of single crystal sapphire and silicon blocks .Comment: 12 pages, 8 figures, proceeding of NDS 2015, 4th International Workshop on Neutron Delivery Systems, 28 -30 September 2015, ILL Grenoble, Franc

    Soliton motion in a parametrically ac-driven damped Toda lattice

    Full text link
    We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a soliton in a Toda lattice with friction, while an unstaggered drivng force cannot. A physical context of the model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac driving force models a standing acoustic wave excited on the surface. Simulations demonstrate that the state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually relaxes back to the equilibrium state that existed before the passage of the soliton. Perturbation theory predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two counter propagating solitons were also simulated, demonstrating that the collisions are, essentially fully elastic

    Breathing oscillations of a trapped impurity in a Bose gas

    Get PDF
    Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1 preprint, 2011], we study breathing oscillations in the width of a harmonically trapped impurity interacting with a separately trapped Bose gas. We provide an intuitive physical picture of such dynamics at zero temperature, using a time-dependent variational approach. In the Gross-Pitaevskii regime we obtain breathing oscillations whose amplitudes are suppressed by self trapping, due to interactions with the Bose gas. Introducing phonons in the Bose gas leads to the damping of breathing oscillations and non-Markovian dynamics of the width of the impurity, the degree of which can be engineered through controllable parameters. Our results reproduce the main features of the impurity dynamics observed by Catani et al. despite experimental thermal effects, and are supported by simulations of the system in the Gross-Pitaevskii regime. Moreover, we predict novel effects at lower temperatures due to self-trapping and the inhomogeneity of the trapped Bose gas.Comment: 7 pages, 3 figure

    Notes on Matter in Horava-Lifshitz Gravity

    Full text link
    We investigate the dynamics of a scalar field governed by the Lifshitz-type action which should appear naturally in Horava-Lifshitz gravity. The wave of the scalar field may propagate with any speed without an upper bound. To preserve the causality, the action cannot have a generic form. Due to the superluminal propagation, a formation of a singularity may cause the breakdown of the predictability of the theory. To check whether such a catastrophe could occur in Horava-Lifshitz gravity, we investigate the dynamics of a dust. It turns out that the dust does not collapse completely to form a singularity in a generic situation, but expands again after it attains a maximum energy density.Comment: 14 pages, references adde

    Relationship between five-dimensional black holes and de Sitter spaces

    Full text link
    We study a close relationship between the topological anti-de Sitter (TAdS)-black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) black hole in five-dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing kk by k-k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild-TdS space by substituting mm with m-m. For this purpose we calculate thermal quantities of bulk, (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further we compute logarithmic corrections to the Bekenstein-Hawking entropy, Cardy-Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that the cosmological horizon of the TdS spaces is nothing but the event horizon of the TAdS black holes and the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes.Comment: 17 page

    Cloud for Gaming

    Full text link
    Cloud for Gaming refers to the use of cloud computing technologies to build large-scale gaming infrastructures, with the goal of improving scalability and responsiveness, improve the user's experience and enable new business models.Comment: Encyclopedia of Computer Graphics and Games. Newton Lee (Editor). Springer International Publishing, 2015, ISBN 978-3-319-08234-

    Gauss-Bonnet Black Holes in AdS Spaces

    Full text link
    We study thermodynamic properties and phase structures of topological black holes in Einstein theory with a Gauss-Bonnet term and a negative cosmological constant. The event horizon of these topological black holes can be a hypersurface with positive, zero or negative constant curvature. When the horizon is a zero curvature hypersurface, the thermodynamic properties of black holes are completely the same as those of black holes without the Gauss-Bonnet term, although the two black hole solutions are quite different. When the horizon is a negative constant curvature hypersurface, the thermodynamic properties of the Gauss-Bonnet black holes are qualitatively similar to those of black holes without the Gauss-Bonnet term. When the event horizon is a hypersurface with positive constant curvature, we find that the thermodynamic properties and phase structures of black holes drastically depend on the spacetime dimension dd and the coefficient of the Gauss-Bonnet term: when d6d\ge 6, the properties of black hole are also qualitatively similar to the case without the Gauss-Bonnet term, but when d=5d=5, a new phase of locally stable small black hole occurs under a critical value of the Gauss-Bonnet coefficient, and beyond the critical value, the black holes are always thermodynamically stable. However, the locally stable small black hole is not globally preferred, instead a thermal anti-de Sitter space is globally preferred. We find that there is a minimal horizon radius, below which the Hawking-Page phase transition will not occur since for these black holes the thermal anti de Sitter space is always globally preferred.Comment: Revtex, 17 pages with 9 eps figures, v2: section II removed and references added, the version to appear in PR
    corecore