29 research outputs found

    Critical fluctuations and pseudogap observed in the microwave conductivity of Bi2Sr2CaCu2O8+δ, Bi2Sr2Ca2Cu3O10+δ, and YBa2Cu3O7-δ thin films

    Get PDF
    Critical fluctuations have been studied in the microwave conductivity of Bi2Sr2CaCu2O8+δ, Bi2Sr2Ca2Cu3O10+δ, and YBa2Cu3O7-δ thin films above T-c. It is found that a consistent analysis of the real and imaginary parts of the fluctuation conductivity can be achieved only if an appropriate wave vector or energy cutoff in the fluctuation spectrum is taken into account. In all of the three underdoped superconducting films one observes strong fluctuations extending far above T-c. The coherence length inferred from the imaginary part of the conductivity exhibits the static critical exponent ν=1 very close to T-c, and a crossover to the region with ν=2/3 at higher temperatures. In parallel, our analysis reveals the absence of the normal conductivity near T-c, i.e., fully opened pseudogap. Following the crossover to the region with ν=2/3, the normal conductivity is gradually recovered, i.e., the closing of the pseudogap is monitored

    Short-wavelength cutoff effects in the ac fluctuation conductivity of superconductors

    Get PDF
    The short-wavelength cutoff has been introduced in the calculation of the ac fluctuation conductivity of superconductors. It is shown that a finite cutoff leads to a breakdown of the scaling property in frequency and temperature. Also, it increases the phase φ of the complex conductivity (tanφ=σ2/σ1) beyond π/4 at Tc. Detailed expressions containing all essential parameters are derived for three-dimensional isotropic and anisotropic fluctuation conductivity. In the two-dimensional case we obtain individual expressions for the fluctuation conductivity for each term in the sum over discrete wave vectors perpendicular to the film plane. A comparison of the theory to the experimental microwave fluctuation conductivity is provided

    General solution for the complex frequency shift in microwave measurements of thin films

    Get PDF
    Perturbation of a microwave cavity by a small sample with variable dielectric, magnetic, or conducting properties is considered. The complex frequency shift is derived in terms of a volume integral, or equivalently, in terms of a surface integral. These are used to obtain a general formula for thin films in the microwave electric field maximum. The complex frequency shift depends on the depolarization factor of the film and on its thickness in a nontrivial way. The previously known expressions for the complex frequency shift are shown to be good approximations of the present solution in the low and high conductivity limits. Our formula is applied to calculate the signal shapes in superconducting films of various geometric parameters and conductivities. It is shown that a diversity of signal shapes can result, and experimental support of those shapes is provided. The role of the dielectric substrate on which the thin film is grown is simply reduced to an asymmetry effect

    Coherence lengths and anisotropy in MgB2 superconductor

    Get PDF
    Field and temperature microwave measurements have been carried out on MgB2 thin film grown on Al2O3 substrate. The analysis reveals the mean field coherence length xi_{MF} in the mixed state and a temperature independent anisotropy ratio gamma_{MF} = xi_{MF}^{ab} / xi_{MF}^c approximately 2. At the superconducting transition, the scaling of the fluctuation conductivity yields the Ginzburg-Landau coherence length with a different anisotropy ratio gamma_{GL} = 2.8, also temperature independent.Comment: submitted to PR

    A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8

    Get PDF
    We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in the dc and microwave resistance near the magnetic ordering temperature (132 K). The intergranular effects were separated from the intragranular effects by performing microwave measurements on a sintered ceramic sample as well as on a powder sample dispersed in an epoxy resin. We show that the data can be interpreted in terms of the normal-state resistivity being dominated by the CuO2 layers with exchange coupling to the Ru moments in the RuO2 layers. Furthermore, most of the normal-state semiconductor-like upturn in the microwave resistance is found to arise from intergranular transport. The data in the superconducting state can be consistently interpreted in terms of intergranular weak-links and an intragranular spontaneous vortex phase due to the ferromagnetic component of the magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys. Rev.

    Correlation gap in the heavy-fermion antiferromagnet UPd_2Al_3

    Full text link
    The optical properties of the heavy-fermion compound UPd2_2Al3_3 have been measured in the frequency range from 0.04 meV to 5 meV (0.3 to 40 cm1^{-1}) at temperatures 2K<T<3002 {\rm K}<T< 300 K. Below the coherence temperature T50T^*\approx 50 K, the hybridization gap opens around 10 meV. As the temperature decreases further (T20T\leq 20 K), a well pronounced pseudogap of approximately 0.2 meV develops in the optical response; we relate this to the antiferromagnetic ordering which occurs below TN14T_N\approx 14 K. The frequency dependent mass and scattering rate give evidence that the enhancement of the effective mass mainly occurs below the energy which is associated to the magnetic correlations between the itinerant and localized 5f electrons. In addition to this correlation gap, we observe a narrow zero-frequency conductivity peak which at 2 K is less than 0.1 meV wide, and which contains only a fraction of the delocalized carriers. The analysis of the spectral weight infers a loss of kinetic energy associated with the superconducting transition.Comment: RevTex, 15 pages, 7 figure

    Accurate thermal conductivities from optimally short molecular dynamics simulations

    Get PDF
    The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H2O) and of crystalline and glassy solids (MgO and a-SiO2). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities

    A Magnetization and Microwave Study of Superconducting MgB2

    Get PDF
    We report magnetic field dependent magnetization and microwave impedance measurements on a MgB2 superconductor prepared by high pressure synthesis. We find that the upper critical field is linearly dependent on temperature near Tc and the dc irreversibility field exponent is ~1.4. The microwave data display an excess surface resistance below Tc which is neither observed in low Tc nor in high temperature superconductors (HTSC). The real part of the complex conductivity, sigma1, shows a huge maximum below Tc and the imaginary part, sigma2, is linear for temperatures less than 20 K, which can not be simply accounted for by the weak coupling BCS model with an s-wave superconducting order parameter. We speculate that this may be due to the two gaps reported by other studies. Unlike measurements on the high temperature superconducting cuprates, we find no evidence of weak-links in the superconducting state. By inverting the magnetic field dependent impedance data, we find a vortex depinning frequency that decreases with increasing magnetic field and evidence for an anisotropic upper critical magnetic field.Comment: Submitted to Phys. Rev. B. 19 pages PD
    corecore