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General solution for the complex frequency shift in microwave measurements of thin films

D.-N. Peligrad®'" B. Nebendahf,and M. Mehring
2. Physikalisches Institut, Universtt&tuttgart, D-70550 Stuttgart, Germany

A. Dulcic," M. Pozk, and D. Paar
Department of Physics, Faculty of Science, University of Zagreb, POB 331, 10002 Zagreb, Croatia
(Received 30 May 2001; published 20 November 2001

Perturbation of a microwave cavity by a small sample with variable dielectric, magnetic, or conducting
properties is considered. The complex frequency shift is derived in terms of a volume integral, or equivalently,
in terms of a surface integral. These are used to obtain a general formula for thin films in the microwave
electric field maximum. The complex frequency shift depends on the depolarization factor of the film and on
its thickness in a nontrivial way. The previously known expressions for the complex frequency shift are shown
to be good approximations of the present solution in the low and high conductivity limits. Our formula is
applied to calculate the signal shapes in superconducting films of various geometric parameters and conduc-
tivities. It is shown that a diversity of signal shapes can result, and experimental support of those shapes is
provided. The role of the dielectric substrate on which the thin film is grown is simply reduced to an asym-

metry effect.
DOI: 10.1103/PhysRevB.64.224504 PACS nuniber74.25.Nf, 74.76.Bz
[. INTRODUCTION samples, the microwave penetration depth becomes smaller

than the size of the sample. This is known as the skin depth

Microwave measurements have shown to be very usefulegime where the complex frequency shift can be related to
in probing the superconducting state in high-temperaturg¢he surface impedance of the samfie?® Usually, single
superconductors:*? The measured quantities are the shiftscrystals of highT, superconductors are thick enough so that
of the resonance frequency and tQefactor of the micro- the skin depth limit is valid at frequencies of 10 GHz or
wave cavity loaded with a sample. In order to extract the reahigher, and the analysis using the surface impedance formula
and imaginary parts of the complex conductividy=c,  Can be app'_iea-_lo o
—ia, from the measured shifts, one needs an accurate ex- N @ previous papéf, we treated the problem of thin films
pression for the cavity perturbation by the sample. This is avhich had high enough conductivities to be well above the
old problem which has been extensively treated in théjepolarlzatmn_crossove_r. The theoretical sqlut_|ons predicted
literature'>~'° The general perturbation formula involves & Sharp negative peak in the frequency shift just below the
both, perturbed and unperturbed fields, and can be consi§uperconducting transition temperatiligin agreement with
ered as satisfactory if the perturbed fields are not mucfihe experimental observatioffs.Those solutions also in-
changed with respect to the unperturbed. When the sample @uded the correct behavior in the skin depth limit.

a weak dielectric, it is justified to take the empty cavity as Generally, thin films can have different thicknesses and
the unperturbed state, so that the insertion of the sampl@onductivities so that the samples may appear anywhere be-
makes a small perturbation. However, the insertion of a goodveen the depolarization regime and the regime which is
conductor sample into the cavity changes the fields consictlose to the skin depth limit. In such cases, using either the
erably and cannot be treated as a small perturbation. It waghchegoley formufd=° or the formula derived in our pre-
proposed to treat the cavity loaded with a perfect conductoY!0US pape2r*3~wou|d yield incorrect values for the complex
sample as the unperturbed state, and find the shifts when tlenductivity o= o, —io, of the material. Consequently, the
sample becomes a nonperfect conduttoFhus, one may physical conclusions drawn from the complex conductivity
expect that the small perturbation condition will hold again.would be erroneous.

When the integrals in the perturbation expression have to In the present paper we review the cavity perturbation
be calculated specifically, one needs to know the samplproblem and the depolarization in ac fields. We find a general
shape. The problem was analytically tractable only for asolution for the complex frequency shift which reduces to the
spherical sampl&-%? Shchegolev has found a practical solu- Shchegolev formufg in the depolarization limit and to the
tion for the complex frequency shift with ellipsoidal samplesformula given in our previous papér in the high-
in the microwave electric field which fully penetrates the conductivity limit.
sample®®?* This is the depolarization regime which has
proven to be applicable in many studf@$® Obviously, one
may expect that the Shchegolev formula becomes gradually
incorrect as the conductivity of the sample is increased so The influence of a small variation of the parameters on the
that one passes through the depolarization crossover and bgroperties of a resonant cavity was first studied byll&h?®
yond it. The discrepancy was demonstrated on a spheric&8olutions were derived for the resonant frequency shift in
conducting sample in the microwave electric fiéld’ cases when the walls of the cavity are perturbed, or a sample

In the limit of very high conductivities and/or thick is introduced in the cavit}f"'°Here, we are interested in the

II. CAVITY PERTURBATION
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If the properties of the sample are changed, each of the fields
is changed a§&—F+ 6F. The new complex frequency can

be written asw+ dw, and one obtains the quantify+ 5.
To the first order in variations, one gets

5?13:if [w(H* - 5B+B- SH*)— w* (E- SD* + D* - 5E)
Ve

+ SwH* -B— Sw*E-D* ]dV. 3
It is sufficient for the perturbation method to yield satisfac-

FIG. 1. Microwave cavity with a sample inside &, is the  tory results thavd~0, i.e., the quantityb as defined in Eq.
surface of the cavity wallsp, is the unit vector normal to this (1) is practically unchanged. This implies that only the fields
surface, and/, is the cavity volume. The surface of the sample is at the surfaceS; of the cavity walls should remain un-
denoted byS,, and the unit vector normal to it by;. changed. The fields in the sample may be varied signifi-

cantly. These conditions can be met if the sample is small
complex frequency shift, which includes both, losses andcompared to the cavity and placed far from the cavity walls,
resonant frequency shift, when the properties of the sample.g., in the interior of the cavity.

are changed. One may consider the complex quantity Equation (3) contains the complex frequency shifiw
B which we want to evaluate, but it also involves its complex
O=- é (EXH*)n.dS= —J V(EXH*)dV, (1)  conjugateSw* so that a direct evaluation is impossible. By
S Ve adapting the method of Kah¥rwe calculaté’

where S; is the surface of the cavity walls. is the unit
vector normal to this surface, and. is the cavity volume Zif Im[V - (E* X H)]dV
(Fig. 1. Losses could occur in the cavity walls, or in the Ve

sample placed inside the cavity, or in both. This is accounted . ~ _

for by writing the time dependence of the fields as eaf)( =l fv [w(B- 6H* —E*- 6D) + w*(B* - 6H—E- 6D*)

where w=w(1+i/2Q) is the complex frequency, ang is . ~

the resultingQ factor of the cavity loaded with the sample. — 0wE* -D—6w*E-D*]dV. 4

Using the Maxwell equations one obtains The left hand side of Eq4) vanishes under the above stated
perturbation condition. Hence, by substracting Ef.from

d=i f (wH* -B—w*E-D*)dV. 2 Eq. (3) one eliminatesw* , and the complex frequency shift
Ve can be evaluated explicitly

f [w(H* - SB+E* - 6D) — o* (B* - SH+D* - 5E)]dV
VC

(2%
%
I

: ®)
f (H*.B+E*.D)dV
VC

where the integral in the denominator represents the energy ~ i
stored in the cavity volum&/, and will be from now on Sw=wr i (E* X 6H—H* X SE)nydS, (6)
denoted byW,. The integration in the numerator of Ec) €

needs to be taken only within the sample volulewhere o the ynit vectong is perpendicular to the sample sur-

the properties of the material have changed. Outside th?acess and points into the sample. The approximation used
sample one assumes tHat=oH and D=¢oE so that the  j, geriving Eq.(6) is that the filling factol” = W /W, is very
terms cancel with the approximation~w*~w, which  small. It is readily achieved if the sample volume is much
holds for highQ-factor values. In practical applications one smaller than the cavity volume.

keeps the input microwave power constant. The stored en-
ergy W, then varies if the dissipation is changed. However,

for large Q-factor values this effect can be neglected and one lll. DEPOLARIZATION IN AC FIELDS

may consideiV, as constant. The depolarization phenomena are well known in the case
Alternatively, one may carry out the calculation in terms of dielectric ellipsoids placed in a homogeneous dc electric
of the surface integral and get the redlilt field Eo. The internal field becom&s
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P; Eo a quasistatic response of a fictitious substitute sample of the

Ei=Eq— N€—0=—1+(6 DN’ (7)  same size as the original one, but having some relative per-
r el s ~ .

mittivity e;. One can now relate the homogeneous electric

where N is the depolarization factor ane| is the relative  fie|g E_ in the substitute sample to the driving external field
permittivity of the dielectric. The problem of a dielectric or E, in analogy to the static case

conducting sample in an ac electric field requires the solu-

tions of a Helmholtz differential equatidhfor the fieldsE E

L . . ~ 0
and H inside and outside of the sample supplemented with E=————. (12)
the appropriate boundary conditions. For an ellipsoid, the 1+(es—1)N

solution is given in terms of a series of ellipsoidal ~ . .
harmonics2%However, with such a solution the calculation 1h€ complex valueds allows for a possible phase shift of

of the complex frequency shift becomes intractable. KleinEs With respect to the driving ac fiel&, whose phase we
et al?® have treated a simpler case of a sphere and found th&&ke as zero. If the fields should look the same from outside
the complex frequency shift could be found in the quasistati¢he two samples, we have to equate the fields at their respec-

limit with an effective complex dielectric permittivitg; ~ tVe surfaces

which depends on the parameker, wherek is the complex ~ _/d

wave vector in the sample aradis the radius of the sphere. E,= E(E)' (12
In the limit [ka|<1, their result reduces to the Shchegolev

form.2% This is the depolarization regime in which the inter- d

nal field E; is practically homogeneous throughout the Hszﬁ(g) (13

sample and close to the value of the driving fi&lg. At

higher conductivities, however, wheka|~1, the solution  Since the field, is also homogeneous, one finds the mag-
with €. predicts a significant deviation from that of Shche- netic field at the surface

golev. In particular, fofka|>1 it predicts correctly the re- q q
sult of the skin depth regime while the Shchegolev form fails A=iwDy= =iweeeoEe (14)
to do so. 2

52'
A compact analytical solution for platelike samples is, . . ,
most needed since high-temperature superconductors alrJeSlng Eqs.(9) and(14) in Eq. (13) one finds

usually prepared as platelike single crystals or thin films. In _ R tanhikd/2)

such cases, the field solutions for a slab geori&#fy>’may = bbbt (15)

serve as a good approximation Sk ikd2
d\ coshikz) The fictitious substitute sample was only used to relate the
”E(z):'é(— —_—, (8 fields at the surface to the driving fiekh. The fields inside
2/ coshikd/2)

the actual sample are given by E¢8) and (9) with E(d/2)

L~ replaced byE, of Eq. (11). Applying these fields one may
sinh(ikz) ) calculate the complex frequency shift given by either the

2

e 9z 0}

- E k.
1 @ :_E(d

coshikd/2) ' volume integral in Eq(5) or the surface integral in Ed6).
This task will be postponed to the next section.
whered is the thickness of the slab and thexis is taken At this point it is useful to analyze some features of the
perpendicular to the slab. The complex wave vector in &ields at the surface of the sample which depend on the geo-
general material is given by metric factorsN andd, when the parameters of the sample
are varied. For an illustration we take only the case of a
~ [~ [~ . O ) nonmagnetic &, = 1) and nondielectricd,=1) normal con-
k:ko My EI’_I |, (10) ~ . .
€ow ductor (c=o},). In Fig. 2 we plot the amplitude and phase of

. ~ o~ E(d/2)/E,, and B(d/2)/E, as functions ofs,. A typical
whereko=w o€ IS the vacuum wave vector antt, &, microwave frequency ofo/2m=10 GHz was used in the
ando are the material parameters. numerical calculations. The film thickness was chosen to be
The question is how should the fiel(d/2) be related to d=100 nm, and the depolarization facthr=10"°. In the
the driving ac fieldE,. Schaumburg and Helbefg*®have  limit of negligible o, i.e., (o,/ €gw) <1, the fields are prac-
proposed to set the complex frequency shift calculated usintically those of the electromagnetic mode in an empty cavity.
the fieldE(z) of Eq. (8) equal to that given by the Shchego- Since the thickness of the film is much smaller than the
lev formula. Here we adopt a different approach where we/acuum wavelengthd<<i,), the electric field atl/2 is prac-
consider the surface problem of a flat ellipsoid which ap-tically at the maximum, and the magnetic field is extremely
proximates our platelike sample. In response to the drivingmall. The magnetic field leads in phase b2 as required
ac field E,, the sample will build charges on its surfaéds. In a cavity mode. Whemr, is increased so thatof,/ eqw)
Looking from the outside, the problem appears equivalent te=1, the induced current= o ,E becomes comparable to the
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FIG. 3. Modulus (i) and phase(ii) of the microwave
FIG. 2. Modulus(a) and phaséb) of the microwave electric and ~ €lectric field at the surface of the samples with geometric para-
magnetic fields at the sample surface normalized to the driving fieldneters: (& N=10"° d=1 um, (b N=10"° d=10 um,
E, whose phase is taken as zero. With increasing conductivity of¢) N=7x10"° d=0.1 mm, andd) N=7x10"* d=0.5 mm.
the sample one can trace the evolution from the depolarization re-
gime to the skin gepth regime. The geometric parameters of therossover and slightly above it. This implies that one has
sample aré\=10"" andd=100 nm. [tanh(kd/2)]/(ikd/2)~1 in Eq.(15). Hence, the position of
the depolarization crossover depends, in this case, solely on
displacement current,wE, and the sample starts to act as athe value ofN. Only at very high conductivities whekd/2
conductor. This transition is reflected in the phase change diecomes comparable to unity, one observes a crossover to
the magnetic field so that it gets in phase with the electridhe skin depth regime. There, the amplitudes of the fields do
field. not change appreciably, only the phase of the electric field
At even higher conductivities one reaches the conditiortakes a lead ofr/4 over the magnetic field. In the limit of
(on/€gw)~N"1. By inspection of Eq(11) one can realize infinite conductivities, the electric field amplitude decreases

that E will drop in amplitude and change phase with respecf© Z€ro value and the magnetic field_g\ttains its maximum.
to the driving fieldE,. This is thedepolarization crossover Those are the perfect conductor conditions.

which is clearly depicted in Fig. 2. Physically, one may well _ In Fig. 3 we present the calculation for thicker samples.
understand this process by considering the effect of thdhe depolarizing factor generally increases for thicker
charges built on the surface of the sample. In passing abo\@mples, but its value depends also on the length and width
the depolarization crossover, the surface charge density @& the sample. One could choose a number of combinations
increased so that the driving electric fiel}, is screened of d andN, but here we select only a few in order to illustrate
inside the sample. Under those conditions, the electric fiel@" intéresting feature. The curves in Fig. 3 are for samples of
found in the sample is related to the currdnto,E which ~ + #M. 10 um, 0.1 mm, and 0.5 mm thickness with depo-

e 6 175 -5 — 4
builds the surface charge density. The phase relationships al|aer|zat|on factors of 10°,107°,7x10°®, and 7x10"", re-

simple. The surface charge density always oscillates in pha ectively. _Flgures 2 and 3 present the evqutlon.of t.he curve
. L o~ ) shapes which have to be analyzed. The depolarization cross-
with the driving fieldE,, and the current density leads in

i over shifts to lower conductivities linearly with . How-
phase bym/2 over the surface charge density. Hence, abovey ey the skin depth crossover is determined by the condition
the depolarization crossover the electric figlth the sample 5 ~d/2, wheres,= \2/uwa, is the skin depth. Hence, a
also leads in phase by/2 over the driving fieldE,. As for  change ofd by one order of magnitude shifts the skin depth
the magnetic field, it increases in the dep0|arizati0n CrosSScrossover by two orders of magnitude on the Conductivity
over due to the current rise. Its phase follows that of thescale. For samples close to 0.1 mm thickness, the two cross-
current and the electric field. over regimes overlap, and, for even thicker samples, the skin
With the values ofd chosen in the case presented in Fig.depth regime precedes the depolarization crossover. These
2, the quantitykd/2 is still very small at the depolarization features are clearly seen in the phase of the electric field
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shown in Fig. 3. It is also interesting to observe that the
amplitude of the electric field exerts a pronounced maximum
at the skin depth crossover in thick samples with low con- o
ductivities[cf. curve(d) in Fig. 3].

In practice, the samples can change their conductivities
with temperature in a finite range. Good metallic conductors
will cover only a range of highr,. If the sample is thick,
one may observe only the skin depth regime. For thin metal-
lic films, one could explore the region between the tail of the
depolarization crossover and the onset of the skin depth re- . . . . :
gime. Eventually for very thin films one may observe the 2 4 6 8 10 12
depolarization crossover. With low-conductivity semicon- —
ductors, one may achieve the cases in which the two cross- '
over regimes overlap. Such cases will be shown experimen-
tally in Sec. VL.

(N/T) A(1/2Q)

IV. COMPLEX FREQUENCY SHIFT

(N/T) (Af /)

Using the fields of the preceding section it is straightfor-
ward to calculate the complex frequency shift induced by a
change of the conductivity of the sample. The starting con-
ductivity defines the initial state of the system, and the al-
tered conductivity the final one. From the surface integral of log( o /e o)
Eq. (6) one finds after a straightforward calculation

FIG. 4. Real and imaginary parts of the complex frequency shift
A;)ﬁ r 1 1 calculated by the general formula of E48) (solid lineg, Shche-

— = — = , (16) olev formula(dashed lines and Eq.(19) (dotted line$. The geo-
o  N|1+(eg— 1N 1+ (eg—1)N g ‘ g

metric parameters of the sample are the same as in Fig. 2. The
~ ~ L . dashed line in(a) is indistinguishable from the solid line over the
wheree; and e stand for the initial and final states, respec-\ypole depolarization peak. At high conductivities shown in the in-
tively. We denoted byl" the dimensionless filling factor of gset of(a), the dotted line is indistinguishable from the solid line.
the sample in the cavity

-1

. (18

_ €oEQVs e 1|N

W, (17 ) N

k? tanh(ikd/2)
+ - - ~
k3 ikd/2

whereV; is the sample volume. In deriving E(L6) we used ~ Where we have used the explicit form feg of a nonmag-
the approximationw;~w;~w in the expressions for the nNetic conductor. _ o o
magnetic fields in Eq(6), and the surface integration was It is easy to verify tha~t in the limit of low conductivities,
made within the slab geometry approximation on the twoi.e., for small values okd/2, Eq. (18) is reduced to the
surfaces of are&,/d. expression given by Shchegoféwith an offset of I'/N
The same result of Eq.16) can be obtained from the when the complex frequency shift is evaluated from the
volume integration given by Ed5). There, one has to use empty cavity state. In the other limit of very high conduc-
for the fieldsE(z) andB(z) the expressions given by Egs. tivities, Eq.(18) becomes approximately
(8) and(9), while D =e.€,E, is taken as homogeneous, and, A r K22
correspondinglyﬂ(z)=iw52 with a linear space depen- S 2 ON cott(iFdIZ), (19
dence. Note that even though the sample is assumed to be in w N? ik
the node of the empty cavity magnetic field, the magneti
terms in Eq.(5) should not be disregarded in favor of the
electric terms. In fact, some of the magnetic terms canc ivities from zero to infinity. In Fig. 4 we plot the real and

with the electric terms, and the result ofEmG) is obtained. imaginary parts of the complex frequency shift for a sample
One can verify that the function[I+ (es—1)N] is ana-  wjth N=10"° andd=100 nm, which are the same geomet-
lytical in the complexo plane. Hence, its total differential ric parameters as in Fig. 2. The full line represents the cal-
determines an infinitesimal shift and the total shift betweerculation based on Eq18), while dashed and dotted lines
any two states does not depend on the integration path. represent the Shchegolev approximation and the approxima-
It is useful to take the perfect conductor as the initial statetion given by Eq.(19), respectively. One can clearly see that,
The second term in Eq16) then vanishes, and one obtains in this example, the Shchegolev expression is satisfactory not
for the complex frequency shift from the perfect conductor toonly in the depolarization regime, as expected, but also
an arbitrary staf& through the entire depolarization crossover and slightly

Swhich is identical to our previous res@ftThus, the result in
g. (18) is a general solution for the full range of conduc-
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FIG. 5. Real and imaginary parts of_the complgx frequency shift  F|G. 6. Real and imaginary parts of the complex frequency shift
calculated by Eq(18) for the samples with geometric parameters asfor the sample with geometric parameters as in the ¢disef Fig.
in Fig. 3. The points A, B, and C have, coordinates which are 5 The calculations were made by the general formula of(E8).

assumed foir,(T¢) values in the calculation of the corresponding (solid lineg, Shchegolev formulédashed lines and Eq.(19) (dot-
curves in Fig. 7. ted lines.

above. It deviates from the general solution of Etﬁ) at from that of Shchego'evy appears for Sam@jk An experi_
conductivities which are fairly above the depolarization mental illustration of such a case will be given in Sec. VI.
crossover but still much below the skin depth crossover. In. The range of the validity of the Shchegolev expression
that region, the Shchegolev expression underestimates th@own in Fig. 4 for a thin sample is not universal. For the
absorption given byA(1/2Q). It also predicts that the fre- thicker samples shown in Fig. 5, the Shchegolev expression
quency shiftAf/f never changes sign, i.e., it approaches thegradually reduces its range of validity to lower conductivi-
perfect-conductor limit from above, which is in contrast toties. In particular, for the sample witi=0.5 mm andN
the well known behavior in the skin depth regime. The ap-=7X 104 [the same as cagd) in Fig. 5], one finds that the
proximate expression in EGLY) is seen to yield satisfactory Shchegolev expression agrees with the general solution
result in the skin depth regime and in a limited range ofgiven by Eq.(18) only below the depolarization crossover.
conductivities below it. However, as the depolarizationFigure 6 shows the calculated curves. The approximate ex-
crossover is approached, B39) becomes invalid. pression given by Eq19) preserves its validity above the

It is interesting to follow the complex frequency shift for depolarization crossover, even in this geometry. One can see
a set of samples of differeM andd as in Fig. 3 where the that over the er_ltlre erolarlzatlon crossover none of the ap-
electric field was analyzed. Figure 5 shows the curves calclRroximate solutions is acceptable. _
lated by Eq(18). The curves are normalized BYN in order Itis interesting to analyze some cases of superconducting
to be presented on the same scale. The most interesting feiun films. We shall illustrate these cases by keeping the film
ture is the change of the shape of the calculatéff curve th'Ck[‘gSS d=100 nm and the depolarization factdu
for thicker samples. This characteristic shape could never bg 10 ° as for the sample in Fig. 4, and assume that the
obtained by the Shchegolev expression which contains On@ypothe‘ucal materials could have some ;electgd values for
N, but notd. Therefore, the curves calculated by the Shche@n(Tc). For the purpose of numerical simulations of the
golev expression always have the same shape and are merégmplex frequency shift, we assume the temperature depen-
displaced along the conductivity axis for different values ofdénce of the normal state conductivity,(T) = on(Tc)/(a
N. Equation(18) on the contrary depends on bdthandd +bT/T;) with a=0.1 andb=0.9. In the suEerconductmg
and can vyield curves of different shapes. The negative plastate, we assume the two-fluid conductivity=o0,—10>
teau inAf/f, which is well seen for the thin sample in Fig. 4, with o= 0,(T)(T/T)?* and o,=Kaon(T)[1—(T/T)*],
is still discernible for sampléa) in the inset of Fig. 5. How- whereK=0,(0)/0,(T,) is the ratio which we choose to be
ever, for thicker samples it evolves into a pronounced mini-20. Figure 7 shows the real and imaginary parts of the com-
mum. Finally, a signal shape, which is very much differentplex frequency shift in three cases selected by different val-
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shift calculated by Eq(18) for the sample with geometric param- N \\\\\\\ N
eters as in the cade) of Fig. 5. The assumed conductivities in the \ \
normal and superconducting states are described in the text. The
values ofa(T,) in the casegA), (B), and(C) are the same as for
the points A, B, and C in Fig. 5.

ues of o,(T.). For the case labeletA), the conductivity
on(Te) is low enough that this point is below the depolar-
ization peak(see Fig. 5. One may look at the curves as if the
sample were cooled from aboig to lower temperatures. In
the normal state the metallic conductivity increases as the
sample is cooled. Hence, when point A in Fig. 5 is ap-
proached from below, one should obtain an increase of giG. 8. 3D plots of the complex frequency shift calculated by
A(lle) and a Qecrease Qﬁf/f_- This, indeed, is observed Eq. (18) for the sample with geometric parameters as in Fig. 7. The
in case(A) of Fig. 7 whenT, is approached from above. nree paths in the compléx plane correspond to those assumed for
Below the superconducting transition, one observes first @asega), (B), and(C) in Fig. 7.
peak in 1/2) followed by a drop to zero at lower tempera-
tures. The frequency shifk f/f for case(A) in Fig. 7 drops cooled from aboveT.. If the temperature scale were ex-
from relatively high value aff. (see point A in Fig. B  tended very much abové., the curve ofA(1/2Q) would
crosses the zero level, exerts a minimum, and then saturateghibit a maximum, i.e., the depolarization peak would be
at a negative value for low temperatures. It can be seen frororossed.
Eq. (18) that the low-temperature value Aff/f must always Finally, case(C) in Fig. 7 showsA(1/2Q) andAf/f cal-
be negative, i.e., a superconductorTat0 has a negative culated for a film whoser,(T.) is on the upper tail of the
frequency shift with respect to the perfect conductor. Thisdepolarization crossovefsee point C in Fig. b For T
occurs since the penetration depth vanishes in the perfectT., the slope ofAf/f has become smaller than that of
conductor limit, but in a superconductor it saturates toA(1/2Q). Also, one may observe that the level®f/f at T,
A (0). is not much above the low-temperature value. The curve for
In the case labele(B) in Fig. 7, the conductivityo,(T,) A(1/2Q) drops rapidly to zero, i.e., without showing any
is chosen to be higher so that the sample is above the deppeak just belowT...
larization peak. If poinB in Fig. 5 is approached from lower One could select a number of other valuesqfT,;) and
conductivities, one should observe a decreasa (ifh/2Q). show minor variations of the cases shown in Fig. 7. Rather
This is now seen in cas@) of Fig. 7 when the sample is than showing the results of such calculations, we find it in-

224504-7



D.-N. PELIGRAD et al. PHYSICAL REVIEW B 64 224504

teresting to look at a 3D plot af(1/2Q) andAf/f over the Yt

1.0+ -
complexc plane. Figure 8 shows such graphs for the sample
of the same geometry as used in Fig. 7. The three pathways ;| L
indicated in Fig. 8 are those taken for the temperature depen-
dences of the conductivities in the normal and superconduct- & 05- |

ing states for the casd#\), (B), and (C) in Fig. 7. Those o
pathways trace the assumed two-fluid conductivities. The
true complex conductivity(T) = o (T) —io,(T) in a given

material would trace its own path in Fig. 8. Thus, the tem-

(NIT) (AG
[=]
+

perature dependences ®{1/2Q) andAf/f may take differ- 021 ¢ 7 & s oy

ent shapes. It is the task of an inversion procedure to extract

a1(T) and a,(T) from experimentally measured values of 0.0 . : — : :

A(1/2Q) and Af/f. 4 6 8 10 12 14
The 3D plot shown in Fig. 8 is made for a given geometry log( o, /e,)

of the sample. Different paths on this plot may represent
various superconducting materials. In another approach, one FIG. 9. Complex frequency shift calculated by Eg4) for the
could consider a given material being cut into samples ofample with geometric parameters as in the ¢asef Fig. 5. The
different geometries. Obviously, for a given material, the@Symmetry rati(g/d is indipated as a number. The points D E, and
path in the complex plane is always given by the sam@) F haveqn coordinates which are assumgd iq{(TC) values in the
and o,(T). However, each sample may have a different de calculation of the corresponding curves in Fig. 11.

polarization factoN so that the corresponding 3D plots of g 5 5 o

the complex frequency shift appear with displaced character- H(d/2)—H(—d/2)=iwDd=iwesexELd, (22
istic peaks and minima. With the same path in the compiex 4 the relative permittivity of the substitute sample be-
plane, the observed experimental curves may have different, oo

shapes. However, in a correct analysis of those apparently

different experimental signals one should obtain the same &2 1

intrinsic o1(T) and o5(T). P

€= 5 = = - (23
kg [cothikd/2) +tanh(ik{)]ikd/2
V. THE ROLE OF DIELECTRIC SUBSTRATES The complex frequency shift is again calculated by &)

tric substrates which have relatively large permittivites ~conductor one find$
ranging from 10 to 25% When placed in the microwave , .
cavity, such samples are not expected to act as pure thin filmd@p _ I'| [k 1 _1iN
since the presence of the dielectric on one side of the fimw N k3 [coth(ikd/2) +tanH(ik ) ]ikd/2 '
introduces an asymmetry. Rather than attempting a compli- (24)
cated field solution for this composite structure, we merely ) ]

note the global effect and try to mimic it by a simple asym_Obwoust, for {—0 this expression reduces to that of Eq.

metric solution. The external fiel&, drives also the dis- I Fig. 9 ot th culated lex f hift
~ . . n Fig. 9 we plot the calculated complex frequency shi
placement currenéD/dt in the dielectric substrate. Hence, for £=0, 0.2, 0.5, 2d, and & in a sample of geometric

the magnetic field is produced by both the current in the thin arametersd—1 um and N=10-°. The asymmeiry pro-

film and the displacement current in the dielectric substrate” :
Therefore, the node of the magnetic field is not found in theduces a small increase a{1/2Q) at and above the depolar-

center of the thin film, but displaced by some amagifiom Ization peak. The effect of asymmetry af/f is observed

it. Disregarding the actual fields in the substrate, we ma;?nly in the upper tail of the depolarization crossover. The
write for the fields in the conducting film ' Inset to Fig. 9 shows on an expanded scale the changes in

Af/f with the asymmetry. For higher ratios dffd, the

N _ coshik(z— )] curves of Af/f develop a pronounced minimum. This im-
E(z)=E;q———————, (20)  plies that the experimental curves &f/f, with o, increas-
coshik(d/2+{)] ing only in a limited range of values, may appear with either
5 5 5 negative or positive slopes, or exhibit a minimum.
~ 1 0E(z) k. sinHik(z—?)] Asymmetry has a noticeable effect on the temperature de-
(2)= o Jz o Scoshik(di2+ )] (21) pendences of the complex frequency shift. In Fig. 10 we plot

A(1/2Q) andAf/f for {=2d and{=5d in the sample with

We may apply the concept of a fictitious substitute sample ageometric parameters as in Fig. 9. The conductivities in the
in Sec. lll. In the present case, the substitute sample shouldormal and superconducting states were assumed to be the
be centered at={ and have the thickness(2-d in order = same as in the calculations of the preceding section. The case
that the fields in this sample are symmetric about its centesshown in Fig. 10 is fow,(T.) chosen to be smaller than that
Equation(14) can now be replaced by the condition which yields the minimum in the frequency shift curves in
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Yt Figure 11 shows the calculated complex frequency shift
0-207 for some chosen values of,(T.) in a sample with the same
] geometric parameters as in Figs. 9 and 10. The asymmetry
0.151 parameter was chosen to e 2d. The absolute values and
3 ] slopes ofA (1/2Q) at T>T. decrease for larger,(T.). The
é“ 0'10'; interesting evolution is seen in the curves f/f. When
= ] o,(T.) is chosen to be the same as for point D in the inset of
; 0‘05'; Fig. 9, the slope oAf/f in Fig. 11 is positive abové,.. For
=~ 0.00 on(T,) asin point E in the inset of Fig. 9, the curve idf/f
s in Fig. 11 passes through a minimum when the temperature
o 05_: g is raised abové . Finally, for a still larger value ofr,(T.),
R ; as in point F of the inset of Fig. 9, one observes only a
U negative slope foAf/f aboveT.. We have observed such

0.8 1.0 12 14 16 18 20 cases experimentally, and some examples will be presented
T/T, in the next section.

FIG. 10. Temperature dependences of the complex frequency
shift calculated by Eq(24) with asymmetry parametets=2d and

5q. The geometric parameters of the thin film are the same as in | the preceding sections we have shown that the general
Fig. 9. solution of the complex frequency shift of thin films in the
_ o _ electric component of the microwave field in a cavity pre-
Fig. 9. One can see that, in this case, the behavior of thgjcts a number of interesting features. In this section we only
complex frequency shift below is not much affected by present the experimental evidence for these features without
the change in the asymmetry paramefeAbove T, how-  entering into a detailed discussion of the electronic proper-
ever, larger asymmetry brings about a bigger slope injes of the materials. The samples were measured in an ellip-
A(1/2Q). The level of Af/f at T, is increased above that tical copper cavity resonating iglE;;; mode at~9.5 GHz.
observed at very low temperatures, and the slope>aT. is  The temperature of the sample could be variednfd K to
also increased. These qualitative features will be demon,-oom temperature by a heater and sensor assembly mounted
strated by experimental results in the next section. on the sapphire sample holder. TRefactor was measured
by a recently introduced modulation technigtdé® The
O empty cavity had 1/Q close to 20 ppm and this value is
substracted in all data shown in this section. TA{4/2Q)
] (D) I values in the experimental curves stand for the absorption
0.2 N caused by the sample itself. An automatic frequency control
(E) : (AFC) system was used to lock the frequency of the source
] I to the cavity resonance. The actual microwave frequency
0.1 (F) r was monitored by a frequency counter.
1 - Figure 12 shows the measured complex frequency shift of
] I a doped Si sample of dimensions4.5x0.5 mn? with a
0.0 e — thin Nb film on one of its larger faces. The superconducting
06 08 10 12 14 16 18 20 transition of Nb &9 K is well observed. More interesting
e T e here is the complex frequency shift due to the doped Si. This
(D) I material hase,~12 and a semiconducting behavior. As the
Ef sample is cooled below 100 K, the conductivity of doped Si
decreases by orders of magnitude. Near 30 K, one observes
(At the depolarization peak iA(1/2Q). The corresponding fre-
I quency shiftAf/f shows the salient feature of a thick weakly
L conducting sample as theoretically predicted in cudjeof
(E) I Fig. 5.
] I Figure 13 gives an example of a thin BSCCO film where
-0.10- _-(D) K o(Te) is slightly below the value required for the depolar-
06 08 10 12 14 16 18 20 ization crossover. When the sample is cooled from 170 K,
T the observed\ (1/2Q) increases. Below; (=110 K), one
¢ observes first a sharp increase &1/2Q) followed by a
FIG. 11. Temperature dependences of the complex frequenci@Pid decrease at lower temperatures. The frequency shift
shift calculated by Eqi24) with asymmetry parametets=2d. The ~ Af/f is very high in the normal state and decreases upon
geometric parameters of the thin film are the same as in Fig. 9. Theooling. BelowT, it drops dramatically to a minimum and
values ofo,(T,) in the casegD), (E), and(F) are the same as for then saturates at low temperatures. The main features of this
the points D, E, and F in Fig. 9. signal are comprised in curv@) of Fig. 7. Note that the

VI. EXPERIMENTAL RESULTS

p

(N/T) A(1/2Q)

0.00

] N(F)
-0.05

(NIT) (Af /)
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34 B
f 750 1 »
i A(1/2Q)
24 B
’é . 500 + o
= | 3
% 14 . B =
= : A(1 / 2Q) \8 250 L
s '3
2\8 o —A < Af/f
<y |
i 0
% )
L Afff
-250 -
T T T T T T
T T T T T T T 0 20 40 60 80 100
0 25 50 T 7?K) 100 126 150 T (K)

FIG. 14. Experimental complex frequency shift measured on a

FIG. 12. Experimental complex frequency shift measured on a\p film grown on ALO; substrate. The conductivity,(T,) is
doped Si sample (41.5<0.5 mn?) with a Nb film on one of its  much higher than that required for the depolarization crossover.
larger faces.

substraté® The saturation of both (1/2Q) andAf/f in the

experimental signal in Fig. 13 demonstrates pronounce@ormal state below 30 K is due to the residual resistivity in
roundings afl; which indicate strong superconducting fluc- this material. The overall shape of the curves is similar to
tuations in the BSCCO system. This fluctuation case(C) in Fig. 7, i.e., to a film which is on the upper tail of
conductivity’”** makes the detailed shape of the curves inthe depolarization crossover.

Fig. 13 different from those in Fig. 7 which were calculated A demonstration of the asymmetry played by the dielec-
with the simple normal state and two-fluid conductivities. tric substrate is shown in F|g 15. We measured a Samp]e of
An example of a thin film with high conductivity is shown z BScCO thin film (=500 nm of length 3 mm and width

in Fig. 14. It was a 10 nm thick Nb film on an AD;

400 AfA i
300 1 -
300 1 -
€ A(1/2Q)
’é\ o 200 1 -
o} L
£ 200 A1/2Q) T
¢ s
3 < 100+ -
< 4004 -
A(1/2Q 0 B
0 ( ) V Af/f
Af/f \} T T T T
: : : : 0 50 100 150
0 50 100 150 T K

T K
FIG. 15. Experimental complex frequency shift measured on a
FIG. 13. Experimental complex frequency shift measured on EBSCCO thin film grown on a 1 mm thick LaAlOsubstratghigher
thin BSCCO film with o,(T.) below the value required for the slope$. The same piece was measured again after the substrate was

depolarization crossover. grinded to 0.2 mm.
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407 A(1/2Q)
200 A12Q) T
g £
g 9 20 4 -
s 7 i 8
Y ~
18 i
B B
J 0
0
. AL
AT
_20 - -
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60 80 100 120 0 20 40 60
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FIG. 16. Experimental complex frequency shift measured on an FIG. 17. Experimental complex frequency shift measured in bo-
YBCO thin film grown on a 0.5 mm thick LaAlQsubstrate. A  rocarbide thin film on a AlO; substrate. A negative slope &f/f is
minimum in Af/f is observed abové, . observed abov@, .

lmmonal mnth|pk LaAIO3. su'bstrate. The same sample temperatures. Such a behavior is seen also in the calculated
was measured again after grinding the thickness of the S“t&'urve in Fig. 11.
strate to 0.2 mni’ A thinner substrate obviously must bring
about less asymmetry for the film. One can observe in Fig.
15 that lower asymmetry yields a smaller slopeAifil/2Q) VIl. CONCLUSIONS
aboveT,. It also makes a smaller slope &f/f. Those are
the main features observed also in the calculated signals in We have treated the problem of thin films in the micro-
Fig. 10. Here, again, the fluctuations aroumd produce wave electric field maximum in a cavity in great detail. Our
roundings in the experimental curves and change the detailegblution for the complex frequency shift is generally valid
shapes of the curves. for all changes of the material parameters, i.e., dielectric
Figure 16 shows experimental signals on an YBCO film(¢,), magnetic f,), and conducting ¢). It covers the full
(d=400 nm on a 0.5 mm thick LaAlQ substraté® The  range of conductivity from zero to infinity, i.e., to the perfect
length of the film was 4 mm and the width 0.5 mm. This conductor limit. We show that the previously known Shche-
sample shows that a minimum if/f can occur abov@,  golev expressidii®*?®is the low-conductivity approxima-
even though there is no sign of an extremum in conductivittion of our solution. In the high-conductivity limit, the
as seen from tha (1/2Q) curve. This is the case @f,(T.)  present solution yields the same behavior as we found
being just above the value required for the minimunAdff  earlier?®
(e.g., point E in the inset of Fig.)9At higher temperatures When applied to superconductor films, the present for-
the conductivity decreases and the frequency shift exhibits mula for the complex frequency shift may predict a diversity
minimum. A qualitatively similar feature was found in the of signal shapes, depending on the geometric parameters of
calculated curve in Fig. 11. the sample and on its conductivity. A number of characteris-
Finally, Fig. 17 shows the complex frequency shift mea-tic signal shapes are calculated using the present general for-
sured in _a borocarbide filmdE=350 nm on an ALO;  mula and experimental demonstration of those diverse signall
substraté! The length of the film was 4 mm, the width 0.5 shapes is provided. The role of the dielectric substrate, on
mm, and the substrate thickness was 1 mm. The curve fawhich the thin film is grown, is also considered. It is shown
A(1/2Q) shows that the resistivity has a metallic behavior inthat to a good approximation the effect of the substrate can
the normal state. Below about 40 K one observes a gradudle accounted for by introducing an asymmetry parameter.
saturation due to the residual resistivity. The frequency shifBoth calculations and experimental evidence are shown to
Af/f exhibits a negative slope aboVg in the whole region  support this role of the dielectric substrate. We expect that
of temperatures covered in the measurement. The conductivhis analysis will help to investigate microwave absorption
ity on(T¢) is appreciably higher than that required for theand frequency shift for a wide range of different samples
minimum of Af/f (such as, e.g., point F in the inset of Fig. with thin film geometry, ranging from metals, superconduct-
9). ForT>T,, the conductivity is reduced, but not enough to ors, semiconductors to magnetic, dielectric and even biologi-
reach the minimum oA f/f within the experimental range of cal samples.
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