16,326 research outputs found
Rigidity of minimal submanifolds in hyperbolic space
We prove that if an -dimensional complete minimal submanifold in
hyperbolic space has sufficiently small total scalar curvature then has
only one end. We also prove that for such there exist no nontrivial
harmonic 1-forms on
Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3
We report on the electronic properties of superlattices composed of three
different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3
substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn
2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly
originating from Mn e_g electrons. Furthermore, the density of states near the
Fermi energy and the magnetization obey a similar temperature dependence,
suggesting a correlation between the spin and charge degrees of freedom at the
interfaces of these oxides
Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition
Temperature-dependent resistivity of graphene grown by chemical vapor
deposition (CVD) is investigated. We observe in low mobility CVD graphene
device a strong insulating behavior at low temperatures and a metallic behavior
at high temperatures manifesting a non-monotonic in the temperature dependent
resistivity.This feature is strongly affected by carrier density modulation. To
understand this anomalous temperature dependence, we introduce thermal
activation of charge carriers in electron-hole puddles induced by randomly
distributed charged impurities. Observed temperature evolution of resistivity
is then understood from the competition among thermal activation of charge
carriers, temperature-dependent screening and phonon scattering effects. Our
results imply that the transport property of transferred CVD-grown graphene is
strongly influenced by the details of the environmentComment: 7 pages, 3 figure
A New Statistic for Analyzing Baryon Acoustic Oscillations
We introduce a new statistic omega_l for measuring and analyzing large-scale
structure and particularly the baryon acoustic oscillations. omega_l is a
band-filtered, configuration space statistic that is easily implemented and has
advantages over the traditional power spectrum and correlation function
estimators. Unlike these estimators, omega_l can localize most of the acoustic
information into a single dip at the acoustic scale while also avoiding
sensitivity to the poorly constrained large scale power (i.e., the integral
constraint) through the use of a localized and compensated filter. It is also
sensitive to anisotropic clustering through pair counting and does not require
any binning. We measure the shift in the acoustic peak due to nonlinear effects
using the monopole omega_0 derived from subsampled dark matter catalogues as
well as from mock galaxy catalogues created via halo occupation distribution
(HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle
dark matter simulations in a 1h^{-1}Gpc box at z=1. We compare these shifts
with those obtained from the power spectrum and conclude that the results
agree. This indicates that any distance measurements obtained from omega_0 and
P(k) will be consistent with each other. We also show that it is possible to
extract the same amount of acoustic information using either omega_0 or P(k)
from equal volume surveys.Comment: 12 pages, 7 figures. ApJ accepted. Edit: Now updated with final
accepted versio
Artificial micro-swimmers in simulated natural environments
Microswimmers, such as bacteria, are known to show different behaviours depending on their local environment. They identify spatial chemical gradients to find nutrient rich areas (chemotaxis) and interact with shear flows to accumulate in high shear regions. Recently, artificial microswimmers have been developed which mimic their natural counterparts in many ways. One of the exciting topics in this field is to study these artificial motors in several natural settings like the ones bacteria interact with. In this Focus article, we summarize recent observations of artificial swimmers in chemical gradients, shear flows and other interesting natural environments simulated in the lab using microfluidics and nanotechnology
- …