688 research outputs found

    A polarized version of the CCFM equation for gluons

    Get PDF
    A derivation for a polarized CCFM evolution equation which is suitable to describe the scaling behavior of the the unintegrated polarized gluon density is given. We discuss the properties of this polarized CCFM equation and compare it to the standard CCFM equation in the unpolarized case.Comment: 15 pages, 6 figures, RevTeX, some minor typos corrected, version to appear in Phys. Rev.

    Parton distribution functions from nonlocal light-cone operators with definite twist

    Get PDF
    We introduce the chiral-even and chiral-odd quark distributions as forward matrix elements of related bilocal quark operators with well-defined (geometric) twist. Thereby, we achieve a Lorentz invariant classification of these distributions which differ from the conventional ones by explicitly taking into account the necessary trace terms. The relations between both kinds of distribution functions are given and the mismatch between their different definition of twist is discussed. Wandzura-Wilczek--like relations between the conventional distributions (based on dynamical twist) are derived by means of geometric twist distribution functions.Comment: 17 pages, REVTEX, Extended version, The Introduction has been rewritten, Setion V "Wandzura-Wilczek--like relations" and App. B are added; Sign errors are correcte

    Measurement of direct photon production at Tevatron fixed target energies

    Full text link
    Measurements of the production of high transverse momentum direct photons by a 515 GeV/c piminus beam and 530 and 800 GeV/c proton beams in interactions with beryllium and hydrogen targets are presented. The data span the kinematic ranges of 3.5 < p_T < 12 GeV/c in transverse momentum and 1.5 units in rapidity. The inclusive direct-photon cross sections are compared with next-to-leading-order perturbative QCD calculations and expectations based on a phenomenological parton-k_T model.Comment: RevTeX4, 23 pages, 32 figures, submitted to Phys. Rev.

    Optical Communications Downlink from a 1.5U CubeSat: OCSD Program

    Get PDF
    NASA’s Optical Communications and Sensors Demonstration (OCSD) program and described in previous presentations, were launched in November 2017 and placed in a 450-km circular orbit. Following on-orbit checkouts and preliminary pointing calibration utilizing on-board star trackers, we have demonstrated (at the time of this manuscript submission) communications links up to 100 Mbps with bit error rates near 10-6 without any forward error correction. Further optimization of the vehicle pointing and detection electronics and operating the transmitter at its full power capacity should enable performance improvements and potential for higher data rates

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure

    Evidence for Parton kT Effects in High pT Particle Production

    Full text link
    Inclusive pizero and direct-photon cross sections in the kinematic range 3.5 < pT < 12 GeV/c with central rapidities are presented for 530 and 800 GeV/c proton beams and a 515 GeV/c pi- beam incident on beryllium targets. Current Next-to-Leading-Order perturbative QCD calculations fail to adequately describe the data for conventional choices of scales. Kinematic distributions from these hard scattering events provide evidence that the interacting partons carry significant initial-state parton transverse momentum (kT). Incorporating these kT effects phenomenologically greatly improves the agreement between calculations and the measured cross sections.Comment: 11 pages including 6 pages of figures with caption

    Leading and higher twists in the proton polarized structure function at large Bjorken x

    Get PDF
    A phenomenological parameterization of the proton polarized structure function has been developed for x > 0.02 using deep inelastic data up to ~ 50 (GeV/c)**2 as well as available experimental results on both photo- and electro-production of proton resonances. According to the new parameterization the generalized Drell-Hearn-Gerasimov sum rule is predicted to have a zero-crossing point at Q**2 = 0.16 +/- 0.04 (GeV/c)**2. Then, low-order polarized Nachtmann moments have been estimated and their Q**2-behavior has been investigated in terms of leading and higher twists for Q**2 > 1 (GeV/c)**2. The leading twist has been treated at NLO in the strong coupling constant and the effects of higher orders of the perturbative series have been estimated using soft-gluon resummation techniques. In case of the first moment higher-twist effects are found to be quite small for Q**2 > 1 (GeV/c)**2, and the singlet axial charge has been determined to be a0[10 (GeV/c)**2] = 0.16 +/- 0.09. In case of higher order moments, which are sensitive to the large-x region, higher-twist effects are significantly reduced by the introduction of soft gluon contributions, but they are still relevant at Q**2 ~ few (GeV/c)**2 at variance with the case of the unpolarized transverse structure function of the proton. Our finding suggests that spin-dependent correlations among partons may have more impact than spin-independent ones. As a byproduct, it is also shown that the Bloom-Gilman local duality is strongly violated in the region of polarized electroproduction of the Delta(1232) resonance.Comment: revised version to appear in Phys. Rev. D; extended discussion on the generalized DHG sum rul

    Black Holes at Future Colliders and Beyond: a Topical Review

    Full text link
    One of the most dramatic consequences of low-scale (~1 TeV) quantum gravity in models with large or warped extra dimension(s) is copious production of mini black holes at future colliders and in ultra-high-energy cosmic ray collisions. Hawking radiation of these black holes is expected to be constrained mainly to our three-dimensional world and results in rich phenomenology. In this topical review we discuss the current status of astrophysical observations of black holes and selected aspects of mini black hole phenomenology, such as production at colliders and in cosmic rays, black hole decay properties, Hawking radiation as a sensitive probe of the dimensionality of extra space, as well as an exciting possibility of finding new physics in the decays of black holes.Comment: 31 pages, 10 figures To appear in the Journal of Physics

    Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    Full text link
    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-ZZ ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of Quantum Electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-ZZ ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in Nature.Comment: Version 18/11/0
    corecore