223,913 research outputs found

    Magnetization in two-dimensional electron gas in a perpendicular magnetic field: the roles of edge states and spin-orbit coupling

    Full text link
    We study the de Haas--van Alphen (dHvA) oscillations in the magnetization of a two-dimensional electron gas (2DEG) under the influence of the edge states and/or the Rashba spin-orbit interaction (SOI). The boundaries of the systems lift partially the degeneracies of Landau levels (LL's) and the resulting edge states lead to the changes of both the center and the amplitude of the sawtoothlike magnetization oscillation. The SOI mixes the spin-up and spin-down states of neighboring LL's into two unequally spaced energy branches. The inclusion of SOI changes the well-defined sawtooth pattern of the dHvA oscillations in the magnetization. The weaker the magnetic field is, the larger is the change of the dHvA oscillations due to the edge effect and/or the spin-orbit coupling. Some theoretical results are compared with the experimental data.Comment: 9 pages, 9 figure

    Anticipating Information Needs Based on Check-in Activity

    Full text link
    In this work we address the development of a smart personal assistant that is capable of anticipating a user's information needs based on a novel type of context: the person's activity inferred from her check-in records on a location-based social network. Our main contribution is a method that translates a check-in activity into an information need, which is in turn addressed with an appropriate information card. This task is challenging because of the large number of possible activities and related information needs, which need to be addressed in a mobile dashboard that is limited in size. Our approach considers each possible activity that might follow after the last (and already finished) activity, and selects the top information cards such that they maximize the likelihood of satisfying the user's information needs for all possible future scenarios. The proposed models also incorporate knowledge about the temporal dynamics of information needs. Using a combination of historical check-in data and manual assessments collected via crowdsourcing, we show experimentally the effectiveness of our approach.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM '17), 201

    Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals

    Full text link
    We report on giant circular dichroism (CD) of a molecule inserted into a plasmonic hot spot. Naturally occurring molecules and biomolecules have typically CD signals in the UV range, whereas plasmonic nanocrystals exhibit strong plasmon resonances in the visible spectral interval. Therefore, excitations of chiral molecules and plasmon resonances are typically off-resonant. Nevertheless, we demonstrate theoretically that it is possible to create strongly-enhanced molecular CD utilizing the plasmons. This task is doubly challenging since it requires both creation and enhancement of the molecular CD in the visible region. We demonstrate this effect within the model which incorporates a chiral molecule and a plasmonic dimer. The associated mechanism of plasmonic CD comes from the Coulomb interaction which is greatly amplified in a plasmonic hot spot.Comment: Manuscript: 4+pages, 4 figures; Supplemental_Material: 10 pages, 7 figure

    A General Information Theoretical Proof for the Second Law of Thermodynamics

    Full text link
    We show that the conservation and the non-additivity of the information, together with the additivity of the entropy make the entropy increase in an isolated system. The collapse of the entangled quantum state offers an example of the information non-additivity. Nevertheless, the later is also true in other fields, in which the interaction information is important. Examples are classical statistical mechanics, social statistics and financial processes. The second law of thermodynamics is thus proven in its most general form. It is exactly true, not only in quantum and classical physics but also in other processes, in which the information is conservative and non-additive.Comment: 4 page

    0++0^{++} scalar glueball in finite-width Gaussian sum rules

    Full text link
    Based on a semiclassical expansion for quantum chromodynamics in the instanton liquid background, the correlation function of the 0++0^{++} scalar glueball current is given, and the properties of the 0++0^{++} scalar glueball are studied in the framework of Gaussian sum rules. Besides the pure classical and quantum contributions, the contributions arising from the interactions between the classical instanton fields and quantum gluons are come into play. Instead of the usual zero-width approximation for the resonance, the Breit-Wigner form for the spectral function of the finite-width resonance is adopted. The family of the Gaussian sum rules for the scalar glueball in quantum chromodynamics with and without light quarks is studied. A consistency between the subtracted and unsubtracted sum rules is very well justified, and the values of the decay width and the coupling to the corresponding current for the 0++0^{++} resonance, in which the scalar glueball fraction is dominant, are obtained.Comment: 18pages, 9figure

    Microcanonical Thermodynamics of First Order Phase Transitions studied in the Potts Model

    Full text link
    Phase transitions of first and second order can easily be distinguished in small systems in the microcanonical ensemble. Configurations of phase coexistence, which are suppressed in the canonical formulation, carry important information about the main characteristics of first order phase transitions like the transition temperature, the latent heat, and the interphase surface tension. The characterisitc backbending of the micro- canonical caloric equation of state T(E) (not to be confused with the well known Van der Waals loops in ordinary thermodynamics) leading to a negative specific heat is intimatly linked to the interphase surface entropy.Comment: Latex, 4 eps-figures, graphicx.st

    Topological thermoelectric effects in spin-orbit coupled electron and hole doped semiconductors

    Get PDF
    We compute the intrinsic contributions to the Berry-phase mediated anomalous Hall and Nernst effects in electron- and hole-doped semiconductors in the presence of an in-plane magnetic field as well as Rashba and Dresselhaus spin orbit couplings. For both systems we find that the regime of chemical potential which supports the topological superconducting state in the presence of superconducting proximity effect can be characterized by plateaus in the topological Hall and Nernst coefficients flanked by well-defined peaks marking the emergence of the topological regime. The plateaus arise from a clear momentum space separation between the region where the Berry curvature is peaked (at the `near-band-degeneracy' points) and the region where the single (or odd number of) Fermi surface lies in the Brillouin zone. The plateau for the Nernst coefficient is at vanishing magnitudes surrounded by two peaks of opposite signs as a function of the chemical potential. These results could be useful for experimentally deducing the chemical potential regime suitable for realizing topological states in the presence of proximity effect.Comment: 8 pages, 8 figure
    • …
    corecore