
Clemson University
TigerPrints

Publications Physics and Astronomy

6-1-2012

Topological Thermoelectric Effects in Spin-Orbit
Coupled Electron- and Hole-Doped
Semiconductors
E Dumitrescu
Clemson University

Chuanwei Zhang
Washington State University

D C. Marinescu
Clemson University, dcm@clemson.edu

Sumanta Tewari
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs

Part of the Astrophysics and Astronomy Commons

This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications
by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Please use publisher's recommended citation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268690524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/physastro_pubs?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=tigerprints.clemson.edu%2Fphysastro_pubs%2F194&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


PHYSICAL REVIEW B 85, 245301 (2012)

Topological thermoelectric effects in spin-orbit coupled electron- and hole-doped semiconductors

E. Dumitrescu,1 Chuanwei Zhang,2 D. C. Marinescu,1 and Sumanta Tewari1
1Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, USA

2Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA
(Received 21 April 2012; published 1 June 2012)

We compute the intrinsic contributions to the Berry-phase mediated anomalous Hall and Nernst effects in
electron- and hole-doped semiconductors in the presence of an in-plane magnetic field as well as Rashba and
Dresselhaus spin-orbit couplings. For both systems we find that the regime of chemical potential which supports
the topological superconducting state in the presence of the superconducting proximity effect can be characterized
by plateaus in the topological Hall and Nernst coefficients flanked by well-defined peaks marking the emergence
of the topological regime. The plateaus arise from a clear momentum space separation between the region
where the Berry curvature is peaked (at the “near-band-degeneracy” points) and the region where the single (or
odd number of) Fermi surface lies in the Brillouin zone. The plateau for the Nernst coefficient is at vanishing
magnitudes surrounded by two large peaks of opposite signs as a function of the chemical potential. These results
could be useful for experimentally deducing the chemical potential regime suitable for realizing topological states
in the presence of the proximity effect.

DOI: 10.1103/PhysRevB.85.245301 PACS number(s): 72.20.Pa, 85.75.−d, 71.10.Pm

I. INTRODUCTION

Topological superconducting states with or without bro-
ken time-reversal symmetry1–3 have recently come under
increasing attention because of the possibility of realizing
Majorana fermions. Majorana fermions,4–11 defined by self-
Hermitian second quantized operators γ = γ †, are remarkable
quantum mechanical particles which can be construed as
their own antiparticles. Recently it has been shown that a
2D electron-doped semiconductor with Rashba-type spin-orbit
coupling in proximity to a bulk s-wave superconductor and
an externally induced perpendicular Zeeman splitting can
support a topological superconducting phase with Majorana
fermion modes at vortex cores and sample edges.12–14 The
proposal followed on an earlier similar proposal for topological
superconducting states using spin-orbit coupling and Zeeman
fields made in the context of cold fermions.15,16 It has
also been pointed out by Alicea17 that in the presence of
Dresselhaus spin-orbit coupling coexisting along with the
usual Rashba coupling, the topological superconducting state
in electron-doped semiconductors can be realized with an
in-plane Zeeman field. Since the in-plane Zeeman field can
be directly applied by an in-plane magnetic field which is
free of the orbital effects, the geometry proposed by Alicea
is useful for producing topological superconductivity in two-
dimensional electron systems. Very recently it has also been
shown18 that the generic Luttinger Hamiltonian applicable
to the hole-doped semiconductors also supports topological
superconductivity and Majorana fermions in the presence
of a perpendicular Zeeman field in a manner similar to its
electron-doped counterpart. The possibility of a larger value
of the effective mass and spin-orbit coupling in p-type holes in
a semiconductor quantum well makes the hole-doped systems
an attractive candidate for realizing topological supercon-
ductivity that breaks time-reversal symmetry. The strategy
of producing topological superconductivity and Majorana
fermions using Rashba spin-orbit coupling, parallel Zeeman
field, and s-wave superconductivity has also been applied
to electron- and hole-doped one-dimensional semiconducting

wires.14,19–21 The one-dimensional topological systems are
particularly useful for constructing quasi-two-dimensional
quantum wire networks22 which can potentially be used22–24 as
platforms for non-Abelian statistics6–9 and universal quantum
computation10,11 in the Bravyi-Kitaev scheme.25 For the pur-
pose of studying anomalous topological transverse response
functions such as anomalous Hall and Nernst effects, in this
paper we will confine ourselves to two-dimensional hole- and
electron-doped semiconductor thin films.

The substantive difference between the topological states
in the electron- and hole-doped semiconductors lies in the fact
that while the superconducting order parameter in the former is
similar to the chiral p-wave (px + ipy) type, the order param-
eter in the hole-doped system in a perpendicular Zeeman field
is predominantly chiral f -wave (fx + ify) type.18 A strong
perpendicular Zeeman field, however, is difficult to realize
experimentally with a magnetic field because of the unwanted
orbital effects which are pair breaking.17 Following Ref. 17, in
this paper we will introduce the geometry and Hamiltonian
for the hole-doped systems which can support topological
superconductivity in the presence of an in-plane Zeeman field
making it easier to produce with a magnetic field. We will
then analyze the Berry-phase mediated topological Hall and
thermoelectric effects in electron- and hole-doped systems
under external conditions necessary for realizing topological
superconductivity with broken time-reversal symmetry. Note
that since we are considering the spontaneous or anomalous
components of the Hall and Nernst effects, we will only
treat two-dimensional systems in the presence of an in-plane
Zeeman splitting.

In all the systems mentioned above the chemical potential
regime that corresponds to the topological state in the presence
of proximity effect is characterized by a single (or odd
number of) Fermi surface which breaks the fermion doubling
theorem.26 It has been argued that in the limit of vanishing su-
perconducting pair potential �0, the single (or odd number of)
Fermi surface at the chemical potential constitutes a necessary
condition for the existence of topological superconductivity
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and Majorana fermions at order parameter defects.27 The
breakdown of the fermion doubling theorem and topological
superconductivity in all the above cases are achieved by the
introduction of a strong Zeeman splitting greater than at least
the proximity-induced superconducting pair potential �0. At
such high values of the Zeeman splitting the superconductivity
itself survives because of the spin-chirality induced on the
semiconductor Fermi surface by a strong enough spin-orbit
coupling.14

The twin requirements of strong Zeeman splitting as well
as spin-orbit coupling on the semiconductor Fermi surface
manifest themselves in interesting Berry-phase28 mediated
topological effects which have pronounced effects on the
anomalous Hall and thermoelectric coefficients.29–44 While
these effects have been investigated previously, our focus
in this paper is near the chemical potential regime—called
the topological regime hereafter—which supports topological
superconductivity in the presence of the s-wave proximity
effect. We find that the topological regimes in both electron-
and hole-doped semiconductors are marked by well-defined
plateaus in the anomalous Hall and Nernst effects as a
function of the chemical potential. The plateaus are not
quantized, however, in the sense of quantized anomalous
transport coefficients, because, even in the topological regime,
the electron- or the hole-doped systems are not fully gapped.
Rather, in this regime of chemical potential they have a
single (or odd number of) Fermi surface which supports,
in the presence of spin-chirality induced by the spin-orbit
coupling, the superconducting proximity effect. Even so,
in the topological regime, there is a clear separation in
the momentum space between the region where the Berry
curvature is peaked (near the “band-degeneracy” points in
the absence of the Zeeman splitting) and the region where
the Fermi surface lies in the Brillouin zone. Since the Nernst
effect is strictly a Fermi surface quantity at zero temperature,
the vanishing of the overlapping region in the Brillouin zone
between the Fermi surface and the Berry curvature results
in a vanishing anomalous Nernst effect in the topological
regime. The plateau in the Nernst coefficient at vanishing
magnitudes is flanked on either side of the topological regime
by well-defined peaks (of opposite signs) arising from the
emergence of a second small Fermi surface which destroys
topological superconductivity but gives rise to large peaks
in the topological Nernst effect. The results presented in
this paper may be useful for experimentally deducing the
topological regimes of the chemical potential in electron- and
hole-doped semiconductors supporting Majorana fermions in
the presence of the proximity effect.

II. BERRY PHASE AND TOPOLOGICAL HALL AND
NERNST EFFECTS

As a particle moves adiabatically through a closed contour
in its parameter space it acquires a geometric phase known
as a Berry phase. In a crystal lattice the wave functions for
a band are written as |�n(k,r)〉 = eik·r |un(k,r)〉 according
to Bloch’s theorem where |un(k,r)〉 is a Bloch function
with the periodicity of the lattice. The eigenfucntions are
k dependent and the relevant parameter space is the space
defined by the crystal momentum k. The Berry connection,

Ak = 〈un(k,r)|i∇k|un(k,r)〉, represents the geometric phase
acquired by a Bloch wave function through infinitesimal
movement in k space and is a vector potential. In analogy
to electrodynamics the Berry curvature is defined as the curl
of this potential as �n(k) = ∇k × Ak which is Berry phase
per unit area. The Berry curvature enters into the equations of
motion of a wavepacket and is responsible for many intrinsic
transport properties. For a system with time-reversal symmetry
and spatial inversion symmetry the Berry curvature vanishes
for all k so it is often ignored.

The charge current in the presence of an electric field
E and a temperature gradient ∇T can be written as Ji =
σijEj + αij (∂jT ) where σij and αij are the electric and
thermoelectric conductivity tensors. In the Hall effect a current
is applied and a magnetic field is present perpendicular to a
conducting sample. In this configuration an electric field is
generated perpendicular to the current so that off-diagonal
terms of σij are nonzero. Similarly for the Nernst effect a
current will arise normal to the temperature gradient when a
perpendicular magnetic field is present. Below we discuss the
anomalous or topological Hall and Nernst effects for a system
where there is no perpendicular magnetic field but there is
still a contribution to the Hall and Nernst effects due to the
presence of a nontrivial Berry curvature.

In the presence of an electric field E, the group velocity of
a Bloch electron is written as30

ṙ = 1

h̄

∂εn(k)

∂k
+ e

h̄
E × �n(k), (1)

where the first term is the usual band dispersion and the second
term is called the anomalous velocity. This anomalous velocity
is responsible for the intrinsic contribution to the anomalous
Hall and anomalous Nernst effects, with the Berry curvature
acting like a magnetic field in k space. With the inclusion of the
anomalous velocity it immediately follows that by summing
the anomalous velocity over all occupied states the charge
conductivity is written as33,34

σxy = e2

h̄

∑
n

∫
dkxdky

(2π )2

nf (En(k)), (2)

where f (En) = 1/[1 + exp(En − μ)/kBT ] is the Fermi dis-
tribution function, kB is the Boltzmann constant, and T is the
temperature.

In order to write an expression for the anomalous Nernst
coefficient we first look at the coefficient ᾱxy which relates the
heat current and electric field by J h

x = ᾱxyEy . αxy can then be
solved for by making use of the Onsager relation ᾱxy = T αxy .
The transverse heat coefficient may be written as the velocity
multiplied by the entropy density,

ᾱxy = T αxy = e

βh̄

∑
n

∫
dkxdky

(2π )2

nsn(k), (3)

where the entropy density of an electron gas is given as
s(k) = −fkln fk − (1 − fk)ln(1 − fk) with fk as the Fermi
distribution function. Using the above equation and this form
for the entropy density, the coefficient αxy may be rewritten

245301-2
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as33,34

αxy = e

h̄

1

T

∑
n

∫
dkxdky

(2π )2

n

×{En(k)f (En(k)) − kBT ln[1 − f (En(k))]}. (4)

Through the use of these Berry-phase mediated thermo-
electric effects one can characterize the topological regimes in
chemical potentials which support the topological supercon-
ducting state in the presence of superconducting proximity
effect. We will deliberately choose quantum well config-
urations with appropriate spin-orbit couplings which will
allow an in-plane Zeeman field for the topological state so
the conventional Hall and thermoelectric effects make no
contributions in experiments.

III. TOPOLOGICAL HALL AND NERNST EFFECTS IN
ELECTRON-DOPED SEMICONDUCTORS

As a warm-up, following Alicea,17 we first consider a
zinc-blende semiconductor quantum well grown in the [110]
direction with an in-plane magnetic field applied parallel to the
semiconductor film. In such a quantum well we expect both
Rashba and Dresselhaus spin-orbit couplings to be present and
the Hamiltonian of this system on the x-y plane is written as17

H = h̄2k2

2m∗ + αR(σ × k) · ẑ + αDkxσz + hyσy. (5)

Here, αR and αD are the strengths of the Rashba and Dres-
selhaus couplings, m∗ is the effective mass of the electrons,
hy the magnitude of the in-plane Zeeman field, and the σ =
(σx,σy,σz) are the Pauli matrices. Diagonalizing the Hamil-
tonian yields energy eigenvalues of E± = h2k2

2m∗ + E0, where
E0 = √

(αDkx)2 + (αRky)2 + (αRkx − hy)2. The degeneracy
between the two bands is lifted by the presence of both
Dresselhaus spin-orbit coupling and the in-plane magnetic
field. It is easy to see that in the absence of the Dresselhaus
coupling, the in-plane Zeeman splitting can be reabsorbed in
the Hamiltonian by a re-definition of the momentum αRkx →
αRkx + hy which leaves the system gapless even with the
Zeeman splitting. The existence of a nonzero Dresselhaus term
αD ensures that a finite gap is created near the band-degeneracy
points at a nonzero value of kx even after this redefinition. The

minimum gap between the bands, � = 2αDhy/

√
α2

R + α2
D ,

is located at kx = αRhy/(α2
R + α2

D) and ky = 0,44 which is
shown in the inset of Fig. 2.

We calculate the Berry curvatures for this system through
�± = 2Im〈 ∂�±

∂kx
| ∂�±

∂ky
〉ẑ, where �± are the eigenstates of the

Hamiltonian in Eq. (5). Evaluating this expression analytically
we find that44

�± = ∓αRαDhy

2E3
0

ẑ, (6)

which are of equal magnitude and opposite signs in the two
bands. In Fig. 1 we plot �− where it can be seen that the Berry
curvature is sharply peaked at the gap minimum between the
two bands, i.e., at the band degeneracy point in k space in
the absence of the Dresselhaus coupling. We note here that

k
x
 (m−1)

k y (
m

−1
)

−2 −1 0 1 2
x 10

7

−2

−1

0

1

2

x 10
7

5

10

15

x 10
−15

FIG. 1. (Color online) Contour plot of the Berry curvature �−
in the lower band of electron-doped semiconductors. The Berry
curvature is sharply peaked at a finite value of kx near the band-
degeneracy point in the absence of the Dresselhaus coupling.

the Berry curvatures are only nonzero for nonzero values of
αD,αR , and hy .

Figure 2 shows the dependence of the anomalous Hall
conductivity on the chemical potential μ at zero temperature.
The band structure near the origin is shown in the inset. Below
μ ∼= −0.5 meV there is no contribution to the integral for
the anomalous Hall coefficient [see Eq. (2)] as the states near
the band gap minimum which have large Berry curvatures
(Fig. 1) are unoccupied. As μ increases these states are filled
and there is a positive contribution to the integral from 
−.
The quasiplateau in the hall conductivity for μ corresponds to
the energy gap between the two bands where there is a single
large Fermi surface away from the origin. It is in this regime
of chemical potential that the system supports the topological
superconducting state because of the breakdown of the fermion
doubling theorem.12–14,17 At higher μ the upper band becomes

−1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

σ xy
 (

e2 /h
)

μ (meV)

−5 0 5

x 10
7

−1

−0.5

0

0.5

1

1.5

k
x
 (m−1)

ε 
(m

eV
)

Δ

Δ

FIG. 2. Anomalous Hall conductivity versus chemical potential
μ at zero temperature for a two-dimensional electron-doped semicon-
ductor. We have used αR = αD = 4.74 × 104 m/s, m∗ = .067me, and
hy = 0.2 meV. The electronic band structure versus kx is shown in the
inset along with the minimum energy gap � indicated by the dashed
lines.
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−1 −0.5 0 0.5 1
−0.01

−0.005

0

0.005
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α xy
 (

k B
e/

h
)

μ (meV)

Δ

FIG. 3. Anomalous Nernst coefficient versus chemical potential
for 2DEG. The dashed lines show the regime of the energy gap �

between the bands. The same parameters have been used as in Fig. 2
with the exception of T = 0.1 K.

occupied, leading to a cancellation of the anomalous Hall
conductivity due to the equal magnitude but opposite sign
of the Berry curvatures of the two bands.

The anomalous Nernst coefficient for an electron-doped
semiconductor near the topological regime is plotted against
μ in Fig. 3. At low temperatures the entropy density sn(k) is
sharply peaked at the Fermi surface, such that the integrand
in Eq. (4) is nonzero only for values of μ corresponding to
the intersection of the Fermi surface(s) and the states near
the minimum band gap (close to the origin) where the Berry
curvatures are nonzero. Figure 3 illustrates this behavior with a
positive peak from the lower band and a negative contribution
from the upper band. For the chemical potential slightly below
or above the topological regime the system has two (or an
even number of) Fermi surfaces one of which lies close to
the band degeneracy point. This small Fermi surface, because
of a nonzero Berry curvature, gives a finite contribution to
the anomalous Nernst effect which differs in sign between
the regimes below and above the topological regime. As the
topological regime is approached from either side, the Berry
curvatures become increasingly sharply peaked [because of
a decreasing E0; see Eq. (6)] while the Fermi surface areas
themselves go down resulting in a pair of peaks of opposite
signs surrounding the topological regime. The topological
regime itself is characterized by a single (or odd number of)
Fermi surface with no weight near the band degeneracy points
with significant Berry curvatures. Thus, the plateau between
the two peaks in Fig. 3 corresponds to the minimum gap
separating the energy bands and indicates the regime in which
the topological superconducting state is possible.

IV. TOPOLOGICAL HALL AND NERNST EFFECTS IN
HOLE-DOPED SEMICONDUCTORS

Next we consider thin-film hole-doped semiconductor
quantum wells grown in the [110] direction. In zinc-blende
semiconductors the band structure is described by k · p
perturbation theory.45 Here the top valence bands consist of
three p orbitals which have an angular momentum L = 1

leading to a sixfold degeneracy at the origin. Including spin,
the total angular momentum operator becomes J = L + S so
that there are four J = 3/2 (heavy hole and light hole) and
two (split-off) J = 1/2 bands which are separated by a large
energy gap through atomic spin-orbit coupling. We focus on
the J = 3/2 bands described by the Luttinger Hamiltonian
near k = 0 which is written as

HL = 1

m

⎡
⎢⎢⎢⎣

P + Q −S R 0

−S∗ P − Q 0 R

R∗ 0 P − Q S

0 R∗ S∗ P + Q

⎤
⎥⎥⎥⎦, (7)

where the quantities P,Q,R are functions of the Luttinger
parameters γ1,γ2,γ3 and the momentum components kx,ky,kz

and act on the basis |j,m〉 with j = 3/2 and m = 3/2,1/2,

−1/2,−3/2 with spin quantization in the growth direction.
In Ref. 18 topological superconducting states with a chiral-
f -wave symmetry have been shown to exist in hole-doped
quantum wells grown in the [001] direction in the presence of
a perpendicular Zeeman field and Rashba spin-orbit coupling.
A perpendicular Zeeman field, however, is unsuitable for
investigations of the anomalous Hall and Nernst effects
because such a magnetic field itself gives rise to conventional
Hall and Nernst effects which are expected to dominate over
the Berry-phase mediated anomalous response. Therefore, in
order to uncover the anomalous Hall and Nernst effects in the
topological regime of the hole-doped systems, we consider
the semiconductor quantum well in the [110] direction with a
Dresselhaus spin-orbit coupling and a parallel Zeeman field.

For the [110] growth direction, we have for the functions
P,Q,R46

P = 1

2
γ1

(
k2
x + k2

y + k2
z

)
,

Q= 1

2
γ2

(
k2
x − 1

2
k2
y − 1

2
k2
z

)
+ 3

4
γ3

(
k2
y − k2

z

)
, (8)

S =
√

3(γ3kx − iγ2ky)kz,

R =
√

3

4

[
(γ2 + γ3)k2

y + (γ2 − γ3)k3
z

]−
√

3

2

(
γ2k

2
x − 2iγ3kxky

)
,

where we now have kx , ky , kz in the [0,0,−1], [−1,1,0], and
[1,1,0] directions, respectively. Due to the confinement of
the quantum well, the momentum is quantized in the growth
direction and is approximated by 〈kz〉 = 0 and 〈k2

z 〉 ≈ (π/a)2

where a is the width of the well. This confinement projects the
above Hamiltonian from three dimensions into two and also
serves to lift the degeneracy between the heavy- and light-hole
bands.

The single-particle Hamiltonian for a two-dimensional hole
gas in a [110] quantum well which is expected to support
topological superconductivity with the s-wave proximity effect
is the sum of the Luttinger, spin-3/2 Rashba, and Dresselhaus
terms,

H = HL + αR(J × k) · ẑ + αDkxJz + hyJy, (9)

where J is the total angular momentum operator given by
the spin 3/2 matrices, γ1, γ2, and γ3 are the Luttinger
parameters, αR and αD are the strengths of the Rashba and
Dresselhaus couplings, and hy is an in-plane Zeeman splitting
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FIG. 4. (a) Band structure of the 2DHG in the kx direction for
ky = 0. (b) Energy gap at origin between lower bands. Here we have
used αR = αD = 2 × 105 m/s, hy = 5 meV, γ1 = 6.92, γ2 = 2.1,
γ3 = 2.9, and a = 8 nm which are chosen for GaAs.

as before. The form of the Rashba and Dresselhaus couplings
in Eq. (9) for holes can be derived using nearly degenerate
pertubation theory.45,47 The band structure for this Hamiltonian
is illustrated in Fig. 4 with parameters chosen for GaAs. It is
clear from Fig. 4 that the combined effects of the Rashba,
Dresselhaus, and in-plane Zeeman splitting give rise to several
regimes of the chemical potential where a spectral gap opens
up near the band-degeneracy points. In analogy with the
electron-doped semiconductors, when the chemical potential
falls within the spectral gaps (topological regime) the system
has an odd number of Fermi surfaces leading to topological
superconductivity in the [110]-grown hole-doped well in the
presence of the superconducting proximity effect.

Next, for a robust s-wave proximity effect on a hole-doped
quantum well we need to ensure that the top valence band
orbital wave functions couple with the orbitals of the adjacent
s-wave superconductor. That this coupling is not automatically
assured can be seen from the fact that the valence band holes
are generically p wave (in contrast to the conduction band elec-
trons which are typically s wave), and therefore coupling with
the s orbitals of the superconductor puts certain constraints
on the value of m of the top valence band wave functions.
To illustrate this, suppose the top valence band quantum
state contains contributions only from pure eigenstates of Jz

as |j = 3
2 ,m = ± 3

2 〉. Since m = ml + ms where ml and ms

are orbital and spin angular momentum quantum numbers,
respectively, m = ± 3

2 implies that this state must consist of
only ml = ±1, ms = ± 1

2 states. However in this case there will
be no overlap between the superconductor orbitals if they are
s-wave (ml = 0) and the ml = ±1 orbitals of the valence band,
and no proximity induced superconductivity can be induced in
the valence band. Therefore unlike in the electron conduction
band, which consists of s orbitals, we must investigate the
orbital angular momentum character of the valence bands for
holes.

The eigenstates of the Hamiltonian in Eq. (9) are pure
eigenstates of the operator Jz only at k = 0, but as k increases
the bands become a mixture of Jz eigenstates and can be written
as a linear combination in the form |�n〉 = c1(k)| 3

2 , 3
2 〉 +

c2(k)| 3
2 , 1

2 〉 + c3(k)| 3
2 ,−1

2 〉 + c4(k)| 3
2 ,−3

2 〉. Figure 5 shows the

−1 −0.5 0 0.5 1
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6
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x
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−
1 )
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0.35

0.4

FIG. 5. (Color online) Contour plot of the Fermi surface at μ

corresponding to the topological regime (μ = −8.5 meV). Color plot
indicates the proportion of light-hole character (mj = ±1/2) in the
top valence band.

Fermi surface for a value of μ (= −8.5 meV) corresponding to
the gap between the HH bands (topological regime; see Fig. 4)
and the mixing of mj = ±1/2 states given by |c2|2 + |c3|2
in the top band at the Fermi surface. Note that mj = ±1/2
eigenstates can be rewritten in the basis |ml,ms〉 as a linear
combination of |ml = 0,1,ms = 1

2 , − 1
2 〉 which guarantees the

presence of ml = 0 states at the Fermi surface allowing for
robust proximity induced superconductivity.

Next we wish to calculate the Berry curvatures associated
with the hole band structure shown in Fig. 4 numerically. In
order to facilitate the calculations of the Berry curvatures, we
use the following expression for the Berry curvature30 which
is equivalent to the form discussed earlier before Eq. (6),


n
xy = i

∑
n′ �=n

〈�n| ∂H
∂kx

|�′
n〉〈�′

n| ∂H
∂ky

|�n〉 − (kx ↔ ky)

(En − En′ )2
. (10)

That this form of the Berry curvatures is equivalent to the
earlier expression discussed before Eq. (6) can be understood
by noting that 〈�n|∇k|�n′ 〉(En′ − En) = 〈�n|∇kH (k)|�n′ 〉.30

Equation (10) has the additional benefit that the arbitrary
phase factors of the eigenstates from numerical diagonalization
are ignored as there is no differentiation of the eigenstates
involved. A contour plot of the Berry curvatures corresponding
to each of the four bands is given in Fig. 6. As can be seen from
this figure, the Berry curvatures are sharply peaked at points in
k space corresponding to the minimum energy gaps in the band
structure of the holes, that is, near the near-band-degeneracy
points.

We now calculate the anomalous Hall conductivity through
Eq. (2) where we use Eq. (10) for the Berry curvatures,
which is equivalent to the Kubo formula in linear response
theory. Figure 7 shows the dependence of σxy on μ at zero
temperature. The physics of this effect is the same as that
of the electron-doped case but with Berry curvatures and a
band structure that are more complicated. Decreasing μ excites
more holes, filling each band, such that there are contributions
to σxy corresponding to the overlap of the Fermi distribution
function and Berry curvature for each band (Fig. 6). As μ
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FIG. 6. (Color online) Contour plot of Berry curvature of each band (units of m2) where (a) corresponds to the lowest band and (d) to the
highest. The y and x axes are ky and kx , respectively, with units of m−1. As seen from the denominator of Eq. (10) these functions are sharply
peaked at values of k near the near-band-degeneracy points.

is made increasingly large and all bands are filled the sum
of the contributions approaches zero. There is again, like
in the case of the electron-doped semiconductors, a small
quasiplateau corresponding to the topological regime of the
chemical potential separating the top two bands.

The regime of chemical potential suitable for topological
superconductivity in the presence of s-wave proximity effect
can be more clearly seen in the anomalous Nernst coefficient
which has a well-defined plateau at vanishing values in
the topological regime. We calculate the anomalous Nernst
coefficient through Eq. (4) with the Berry curvatures found by
using Eq. (10). The μ dependence of the Nernst coefficient is

−100 −50 0

−0.3

−0.1

0.1

0.3

0.5

σ xy
 (

e2 /h
)

μ (meV)

FIG. 7. Plot of the anomalous Hall conductivity for the hole-
doped semiconductor at T = 0 with the same parameters as those
used in Fig. 4.

shown in Fig. 8 near the regime of μ near the energy gap �

between the top bands as illustrated in Fig. 4. Similar to the
electron-doped systems, the integrand of Eq. (4) is a product of
the entropy density, sharply peaked at the Fermi surface, and
the Berry curvatures shown in Fig. 6 which are peaked near
the near-band-degeneracy points. There are two contributions
to Fig. 8 as the Fermi surface corresponding to each band
sweeps through the area of k space near the origin where the

−11 −10 −9 −8 −7 −6
−0.04

0

0.04

μ (meV)

α xy
 (

k B
 e

/h
)

Δ

FIG. 8. Plot of the anomalous Nernst coefficient for the [110]-
grown hole-doped quantum well near the topological regime of the
chemical potential. The topological regime of μ is characterized by
a plateau of the anomalous Nernst coefficient (at vanishing values)
flanked by two peaks of opposite signs as in the case of the electron-
doped semiconductors. The parameters used are the same as in Fig. 4
except that T = 0.1 K.
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Berry curvature is sharply peaked. The plateau for which the
coefficient αxy = 0 corresponds to the energy gap between
the bands which supports the topological superconducting
state and is surrounded by well-defined peaks of opposite
sign on either side. The vanishing of the Nernst effect, as
before, originates from the clear momentum space separation
between the single (or odd number of) Fermi surface, which
is a requirement for the topological superconductivity with
Majorana fermions, and the regions in the momentum space
(the near-band-degeneracy points) where the topological Berry
phase is sharply peaked.

V. SUMMARY AND CONCLUSION

In this paper we study the intrinsic contributions to the
anomalous Hall and thermoelectric coefficients for thin-film
electron- and hole-doped semiconductors with Rashba and
Dresselhaus spin-orbit couplings and a suitably directed
Zeeman field. Due to the presence of the spin-orbit interactions
and Zeeman field, a gap is induced in both the conduction and
valence bands. When the chemical potential is inside the gap,
the so-called topological regime, it has been proposed that
a topological superconducting state with Majorana fermions
may be supported in the presence of the s-wave supercon-
ducting proximity effect. For the study of anomalous Hall
and Nernst effects, we require the applied Zeeman field to
be parallel to the planes of the semiconductor. To achieve
this, we first introduce the Hamiltonian of a [110]-grown
hole-doped quantum well and show that in the presence of a
parallel Zeeman field several topological regimes of chemical
potential open up which can potentially support topological
superconductivity in the presence of the proximity effect.

We then discuss the wave function of the top hole-doped
valence band and show that there is a considerable mixing of
mj = ±1/2 states which is necessary for proximity-induced
s-wave superconductivity. With the Hamiltonians for the
electron- as well as hole-doped systems capable of supporting
topological regimes of the chemical potential with only
in-plane magnetic fields, we discuss the associated Berry
curvatures. Time-reversal and spatial inversion symmetry
breaking give rise to nontrivial Berry curvatures at the points in
k space corresponding to local minimum gaps between energy
bands, the so-called near-band-degeneracy points. We make
use of this fact to show that the topological regimes of the
chemical potential generically have well-defined plateaus in
both anomalous Hall and Nernst effects. While the plateau in
the anomalous Hall coefficient is at a nonzero value, the Nernst
coefficient saturates in the topological regime at αxy = 0.
The plateau at αxy = 0 is surrounded by well-defined peaks
of the anomalous Nernst effect of opposite signs indicating
the emergence of the topological regime. The vanishing of
the Nernst effect in the topological regime originates from
the clear momentum space separation between the single
(or odd number of) Fermi surface, a requirement for the
topological superconductivity with Majorana fermions, and
the regions in the momentum space (the near-band-degeneracy
points) where the topological Berry phase is sharply
peaked.
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