32,401 research outputs found

    Radiance and Doppler shift distributions across the network of the quiet Sun

    Full text link
    The radiance and Doppler-shift distributions across the solar network provide observational constraints of two-dimensional modeling of transition-region emission and flows in coronal funnels. Two different methods, dispersion plots and average-profile studies, were applied to investigate these distributions. In the dispersion plots, we divided the entire scanned region into a bright and a dark part according to an image of Fe xii; we plotted intensities and Doppler shifts in each bin as determined according to a filtered intensity of Si ii. We also studied the difference in height variations of the magnetic field as extrapolated from the MDI magnetogram, in and outside network. For the average-profile study, we selected 74 individual cases and derived the average profiles of intensities and Doppler shifts across the network. The dispersion plots reveal that the intensities of Si ii and C iv increase from network boundary to network center in both parts. However, the intensity of Ne viii shows different trends, namely increasing in the bright part and decreasing in the dark part. In both parts, the Doppler shift of C iv increases steadily from internetwork to network center. The average-profile study reveals that the intensities of the three lines all decline from the network center to internetwork region. The binned intensities of Si ii and Ne viii have a good correlation. We also find that the large blue shift of Ne viii does not coincide with large red shift of C iv. Our results suggest that the network structure is still prominent at the layer where Ne viii is formed in the quiet Sun, and that the magnetic structures expand more strongly in the dark part than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure

    High resolution, low temperature photoabsorption cross-section of C2H2 with application to Saturn's atmosphere

    Get PDF
    New laboratory observations of the VUV absorption cross-section of C2H2, obtained under physical conditions approximating stratospheres of the giant planets, were combined with IUE observations of the albedo of Saturn, for which improved data reduction techniques have been used, to produce new models for that atmosphere. When the effects of C2H2 absorption are accounted for, additional absorption by other molecules is required. The best-fitting model also includes absorption by PH3, H2O, C2H6 and CH4. A small residual disagreement near 1600 A suggests that an additional trace species may be required to complete the model

    NMR Investigation of the Low Temperature Dynamics of solid 4He doped with 3He impurities

    Full text link
    The lattice dynamics of solid 4He has been explored using pulsed NMR methods to study the motion of 3He impurities in the temperature range where experiments have revealed anomalies attributed to superflow or unexpected viscoelastic properties of the solid 4He lattice. We report the results of measurements of the nuclear spin-lattice and spin-spin relaxation times that measure the fluctuation spectrum at high and low frequencies, respectively, of the 3He motion that results from quantum tunneling in the 4He matrix. The measurements were made for 3He concentrations 16<x_3<2000 ppm. For 3He concentrations x_3 = 16 ppm and 24 ppm, large changes are observed for both the spin-lattice relaxation time T_1 and the spin-spin relaxation time T_2 at temperatures close to those for which the anomalies are observed in measurements of torsional oscillator responses and the shear modulus. These changes in the NMR relaxation rates were not observed for higher 3He concentrations.Comment: 23 pages, 10 figure

    Time-Resolved X-Ray Diffraction Investigation of Superheating-Melting of Crystals under Ultrafast Heating

    Get PDF
    The maximum superheating of a solid prior to melting depends on the effective dimensionless nucleation energy barrier, heterogeneities such as free surfaces and defects, and heating rates. Superheating is rarely achieved with conventional slow heating due to the dominant effect of heterogeneous nucleation. In present work, we investigate the superheating-melting behavior of crystals utilizing ultrafast heating techniques such as exploding wire and laser irradiation, and diagnostics such as time-resolved X-ray diffraction combined with simultaneous measurements on voltage and current (for exploding wire) and particle velocity (for laser irradiation). Experimental designs and preliminary results are presented

    Cell cycle-dependent phosphorylation of Theileria annulata schizont surface proteins

    Get PDF
    The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK, CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro) epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65 phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the persistence of the parasite within the dividing host cell and the maintenance of the transformed state
    • …
    corecore