792 research outputs found

    Spin current induced magnetization oscillations in a paramagnetic disc

    Get PDF
    When electron spins are injected uniformly into a paramagnetic disc, they can precess along the demagnetizing field induced by the resulting magnetic moment. Normally this precession damps out by virtue of the spin relaxation which is present in paramagnetic materials. We propose a new mechanism to excite a steady-state form of this dynamics by injecting a constant spin current into this paramagnetic disc. We show that the rotating magnetic field generated by the eddy currents provide a torque which makes this possible. Unlike the ferromagnetic equivalent, the spin-torque-oscillator, the oscillation frequency is fixed and determined by the dimensions and intrinsic parameters of the paramagnet. The system possesses an intrinsic threshold for spin injection which needs to be overcome before steady-state precession is possible. The additional application of a magnetic field lowers this threshold. We discuss the feasibility of this effect in modern materials. Transient analysis using pump-probe techniques should give insight in the physical processes which accompany this effect

    Frequency and power dependence of spin-current emission by spin pumping in a thin film YIG/Pt system

    Get PDF
    This paper presents the frequency dependence of the spin current emission in a hybrid ferrimagnetic insulator/normal metal system. The system is based on a ferrimagnetic insulating thin film of Yttrium Iron Garnet (YIG, 200 nm) grown by liquid-phase-epitaxy (LPE) coupled with a normal metal with a strong spin-orbit coupling (Pt, 15 nm). The YIG layer presents an isotropic behaviour of the magnetization in the plane, a small linewidth, and a roughness lower than 0.4 nm. Here we discuss how the voltage signal from the spin current detector depends on the frequency [0.6 - 7 GHz], the microwave power, Pin, [1 - 70 mW], and the in-plane static magnetic field. A strong enhancement of the spin current emission is observed at low frequencies, showing the appearance of non-linear phenomena.Comment: 7 pages, 5 figure

    Spin accumulation probed in multiterminal lateral all-metallic devices

    Get PDF
    We study spin accumulation in an aluminium island, in which the injection of a spin current and the detection of the spin accumulation are done by means of four cobalt electrodes that connect to the island through transparent tunnel barriers. Although the four electrodes are designed as two electrode pairs of the same shape, they nonetheless all exhibit distinct switching fields. As a result the device can have several different magnetic configurations. From the measurements of the amplitude of the spin accumulation, we can identify these configurations, and using the diffusion equation for the spin imbalance, we extract the spin relaxation length λsf=400±50\lambda_\mathrm{sf} = 400 \pm 50~nm and an interface spin current polarization P=(10±1)P = (10 \pm 1)% at low temperature and λsf=350±50\lambda_\mathrm{sf} = 350 \pm 50~nm, P=(8±1)P = (8 \pm 1)% at room temperature

    Spin-dependent Seebeck coefficients of Ni_{80}Fe_{20} and Co in nanopillar spin valves

    Get PDF
    We have experimentally determined the spin-dependent Seebeck coefficient of permalloy (Ni_{80}Fe_{20}) and cobalt (Co) using nanopillar spin valve devices. The devices were specifically designed to completely separate heat related effects from charge related effects. A pure heat current through the nanopillar spin valve, a stack of two ferromagnetic layers (F) separated by a non-magnetic layer (N), leads to a thermovoltage proportional to the spin-dependent Seebeck coefficient S_{S}=S_{\uparrow}-S_{\downarrow} of the ferromagnet, where S_{\uparrow} and S_{\downarrow} are the Seebeck coefficient for spin-up and spin-down electrons. By using a three-dimensional finite-element model (3D-FEM) based on spin-dependent thermoelectric theory, whose input material parameters were measured in separate devices, we were able to accurately determine a spin-dependent Seebeck coefficient of -1.8 microvolt/Kelvin and -4.5 microvolt/Kelvin for cobalt and permalloy, respectively corresponding to a Seebeck coefficient polarization P_{S}=S_{S}/S_{F} of 0.08 and 0.25, where S_{F} is the Seebeck coefficient of the ferromagnet. The results are in agreement with earlier theoretical work in Co/Cu multilayers and spin-dependent Seebeck and spin-dependent Peltier measurements in Ni_{80}Fe_{20}/Cu spin valve structures

    Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride

    Get PDF
    We present a fast method to fabricate high quality heterostructure devices by picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with hexagonal boron nitride to demonstrate this approach, showing good electronic quality with mobilities ranging from 17 000 cm^2/V/s at room temperature to 49 000 cm^2/V/s at 4.2 K, and entering the quantum Hall regime below 0.5 T. This method provides a strong and useful tool for the fabrication of future high quality layered crystal devices.Comment: 5 pages, 3 figure

    24 \textmu m length spin relaxation length in boron nitride encapsulated bilayer graphene

    Get PDF
    We have performed spin and charge transport measurements in dual gated high mobility bilayer graphene encapsulated in hexagonal boron nitride. Our results show spin relaxation lengths λs\lambda_s up to 13~\textmu m at room temperature with relaxation times τs\tau_s of 2.5~ns. At 4~K, the diffusion coefficient rises up to 0.52~m2^2/s, a value 5 times higher than the best achieved for graphene spin valves up to date. As a consequence, λs\lambda_s rises up to 24~\textmu m with τs\tau_s as high as 2.9~ns. We characterized 3 different samples and observed that the spin relaxation times increase with the device length. We explain our results using a model that accounts for the spin relaxation induced by the non-encapsulated outer regions.Comment: 5 pages and 4 figure

    Observation of the spin Peltier effect

    Full text link
    We report the observation of the spin Peltier effect (SPE) in the ferrimagnetic insulator Yttrium Iron Garnet (YIG), i.e. a heat current generated by a spin current flowing through a Platinum (Pt)|YIG interface. The effect can be explained by the spin torque that transforms the spin current in the Pt into a magnon current in the YIG. Via magnon-phonon interactions the magnetic fluctuations modulate the phonon temperature that is detected by a thermopile close to the interface. By finite-element modelling we verify the reciprocity between the spin Peltier and spin Seebeck effect. The observed strong coupling between thermal magnons and phonons in YIG is attractive for nanoscale cooling techniques.Comment: 5 pages, 3 figures, 4 pages supplementary information, 4 supplementary figure

    Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field

    Full text link
    We experimentally study the electronic spin transport in hBN encapsulated single layer graphene nonlocal spin valves. The use of top and bottom gates allows us to control the carrier density and the electric field independently. The spin relaxation times in our devices range up to 2 ns with spin relaxation lengths exceeding 12 μ\mum even at room temperature. We obtain that the ratio of the spin relaxation time for spins pointing out-of-plane to spins in-plane is τ/τ\tau_{\bot} / \tau_{||} \approx 0.75 for zero applied perpendicular electric field. By tuning the electric field this anisotropy changes to \approx0.65 at 0.7 V/nm, in agreement with an electric field tunable in-plane Rashba spin-orbit coupling
    corecore