163 research outputs found
Probing bacterial-fungal interactions at the single cell level.
Interactions between fungi and prokaryotes are abundant in many ecological systems. A wide variety of biomolecules regulate such interactions and many of them have found medicinal or biotechnological applications. However, studying a fungal-bacterial system at a cellular level is technically challenging. New microfluidic devices provided a platform for microscopic studies and for long-term, time-lapse experiments. Application of these novel tools revealed insights into the dynamic interactions between the basidiomycete Coprinopsis cinerea and the bacterium Bacillus subtilis. Direct contact was mediated by polar attachment of bacteria to only a subset of fungal hyphae suggesting a differential competence of fungal hyphae and thus differentiation of hyphae within a mycelium. The fungicidal activity of B. subtilis was monitored at a cellular level and showed a novel mode of action on fungal hyphae
Dual-flow-RootChip reveals local adaptations of roots towards environmental asymmetry at the physiological and genetic levels
Roots grow in highly dynamic and heterogeneous environments. Biological activity as well as uneven nutrient availability or localized stress factors result in diverse microenvironments. Plants adapt their root morphology in response to changing environmental conditions, yet it remains largely unknown to what extent developmental adaptations are based on systemic or cellâautonomous responses. We present the dualâflowâRootChip, a microfluidic platform for asymmetric perfusion of Arabidopsis roots to investigate rootâenvironment interactions under simulated environmental heterogeneity. Applications range from investigating physiology, root hair development and calcium signalling upon selective exposure to environmental stresses to tracing molecular uptake, performing selective drug treatments and localized inoculations with microbes. Using the dualâflowâRootChip, we revealed cellâautonomous adaption of root hair development under asymmetric phosphate (Pi) perfusion, with unexpected repression in root hair growth on the side exposed to low Pi and rapid tipâgrowth upregulation when Pi concentrations increased. The asymmetric root environment further resulted in an asymmetric gene expression of RSL4, a key transcriptional regulator of root hair growth. Our findings demonstrate that roots possess the capability to locally adapt to heterogeneous conditions in their environment at the physiological and transcriptional levels. Being able to generate asymmetric microenvironments for roots will help further elucidate decisionâmaking processes in rootâenvironment interactions
Fabrication and use of the dual-flow-rootChip for the imaging of arabidopsis roots in asymmetric microenvironments
Fabrication and Use of the Dual-Flow-RootChip for the Imaging of Arabidopsis Roots in Asymmetric Microenvironment
Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae
Intercellular distribution of nutrients and coordination of responses to internal and external cues via endogenous signaling molecules are hallmarks of multicellular organisms. Vegetative mycelia of multicellular fungi are syncytial networks of interconnected hyphae resulting from hyphal tip growth, branching, and fusion. Such mycelia can reach considerable dimensions and, thus, different parts can be exposed to quite different environmental conditions. Our knowledge about the mechanisms by which fungal mycelia can adjust nutrient gradients or coordinate their defense response to fungivores is scarce, in part due to limitations in technologies currently available for examining different parts of a mycelium over longer time periods at the microscopic level. Here, we combined a tailor-made microfluidic platform with time-lapse fluorescence microscopy to visualize the dynamic response of the vegetative mycelium of a basidiomycete to two different stimuli. The microfluidic platform allows simultaneous monitoring at both the colony and single-hypha level. We followed the dynamics of the distribution of a locally administered nutrient analog and the defense response to spatially confined predation by a fungivorous nematode. Although both responses of the mycelium were constrained locally, we observed long-distance propagation for both the nutrient analog and defense response in a subset of hyphae. This propagation along hyphae occurred in both acropetal and basipetal directions and, intriguingly, the direction was found to alternate every 3 hr in an individual hypha. These results suggest that multicellular fungi have, as of yet, undescribed mechanisms to coordinate the distribution of nutrients and their behavioral response upon attack by fungivores
Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?
âKey biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of SgrĂł et al. (2011 Evol. Appl. 4, 326â337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for âthreatened species' to consider âthreatened taxaâ and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites
Recommended from our members
Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data
ABSTRACT The European Union's Natura 2000 (N2000), is one of the largest international networks of protected areas. One of its aims is to secure the status of a pre-determined set of (targeted) bird and butterfly species. However, also non-target species may benefit from N2000. We evaluated how the terrestrial component of this network relates to the abundance of non-targeted, more common bird and butterfly species using data from long-term volunteer-based monitoring programs in 9,602 sites for birds and 2,001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased with the proportion of N2000 sites in the landscape. The corresponding positive relationship was found for 27 of the 104 butterfly species, although most of these species were generalists. These positive relationships disappeared for most of the species when land-cover covariates were taken into account, hinting that land-cover is a primary factor defining the positive effects of the N2000 network. The increase in abundance with N2000 was correlated with the specialization index for bird species, but not for butterfly species. Although the N2000 network supports higher abundance of a large spectrum of species, the low number of specialist butterfly species showing a positive association stresses the need to implement management plan improving the quality of habitats of N2000 areas potentially harboring openland butterfly specialists. For a better understanding of the processes involved, we advocate for a standardized collection of data on N2000 sites. Article impact statement: Across Europe the abundance of a majority of nontarget birds and a quarter of nontarget butterflies increased with Natura 2000 coverage. This article is protected by copyright. All rights reservedpeerReviewe
- âŠ