32 research outputs found

    The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome

    Get PDF
    Background: Microorganisms serve important functions within numerous eukaryotic host organisms. An understanding of the variation in the plant niche-level microbiome, from rhizosphere soils to plant canopies, is imperative to gain a better understanding of how both the structural and functional processes of microbiomes impact the health of the overall plant holobiome. Using Populus trees as a model ecosystem, we characterized the archaeal/bacterial and fungal microbiome across 30 different tissue-level niches within replicated Populus deltoides and hybrid Populus trichocarpa × deltoides individuals using 16S and ITS2 rRNA gene analyses. Results: Our analyses indicate that archaeal/bacterial and fungal microbiomes varied primarily across broader plant habitat classes (leaves, stems, roots, soils) regardless of plant genotype, except for fungal communities within leaf niches, which were greatly impacted by the host genotype. Differences between tree genotypes are evident in the elevated presence of two potential fungal pathogens, Marssonina brunnea and Septoria sp., on hybrid P. trichocarpa × deltoides trees which may in turn be contributing to divergence in overall microbiome composition. Archaeal/bacterial diversity increased from leaves, to stem, to root, and to soil habitats, whereas fungal diversity was the greatest in stems and soils. Conclusions: This study provides a holistic understanding of microbiome structure within a bioenergy relevant plant host, one of the most complete niche-level analyses of any plant. As such, it constitutes a detailed atlas or map for further hypothesis testing on the significance of individual microbial taxa within specific niches and habitats of Populus and a baseline for comparisons to other plant species

    Using high resolution cardiac CT data to model and visualize patient-specific interactions between trabeculae and blood flow

    No full text
    Abstract. In this paper, we present a method to simulate and visualize blood flow through the human heart, using the reconstructed 4D motion of the endocardial surface of the left ventricle as boundary conditions. The reconstruction captures the motion of the full 3D surfaces of the complex features, such as the papillary muscles and the ventricular trabeculae. We use visualizations of the flow field to view the interactions between the blood and the trabeculae in far more detail than has been achieved previously, which promises to give a better understanding of cardiac flow. Finally, we use our simulation results to compare the blood flow within one healthy heart and two diseased hearts.
    corecore