450 research outputs found
How specific is synchronous neuronal firing? : Poster presentation
Background Synchronous neuronal firing has been discussed as a potential neuronal code. For testing first, if synchronous firing exists, second if it is modulated by the behaviour, and third if it is not by chance, a large set of tools has been developed. However, to test whether synchronous neuronal firing is really involved in information processing one needs a direct comparison of the amount of synchronous firing for different factors like experimental or behavioural conditions. To this end we present an extended version of a previously published method NeuroXidence [1], which tests, based on a bi- and multivariate test design, whether the amount of synchronous firing above the chance level is different for different factors
Experimental investigation of the deformation behavior of aluminium-bicrystals
This Max-Planck project report discusses the deformation behaviour of an aluminium-bicrystal with a symmetrical tilt boundary and an initial misorientation of 8.7 Degrees. The specimen was compressed in a channel die to 30% engineering thickness reduction at room temperature. Afterwards the crystal orientations were determined by electron backscatter diffraction (EBSD) and the plastic strain distribution was measured by photogrametry. It was found that the two abutting crystals close to the grain boundary rotate towards each other, whereas the grain interiors increase their mutual misorientation during plastic loading
Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation
A polycrystalline aluminum sample with a quasi-2D single layer of coarse grains is plastically deformed in a channel die plane strain set-up at ambient temperature and low strain rate. The microtexture of the specimen is determined by analysis of electron back scattering patterns obtained in a scanning electron microscope. The spatial distribution of the plastic microstrains at the sample surface is determined by measurement of the 3D plastic displacement field using a photogrametric pixel-based pattern recognition algorithm. The initial microtexture is mapped onto a finite element mesh. Continuum and crystal plasticity finite element simulations are conducted using boundary conditions which approximate those of the channel die experiments. The experimental and simulation data are analyzed with respect to macromechanical and micromechanical effects on grain-scale plastic heterogeneity. The most important contributions among these are the macroscopic strain profile (friction), the kinematic hardness of the crystals (individual orientation factors), the interaction with neighbor grain, and grain boundary effects, Crystallographic analysis of the data reveals two important points. First, the macroscopic plastic strain path is not completely altered by the crystallographic texture, but modulated following soft crystals and avoiding hard crystals. Second, grain-scale mechanisms are strongly superimposed by effects arising from the macroscopic profile of strain, The identification of genuine interaction mechanisms at this scale therefore requires procedures to filter out macroscopically induced strain gradients. As an analysis tool, the paper introduces a micromechanical Taylor factor, which differs from the macromechanical Taylor factor by the fact that crystal shear is normalized by the local rather than the global von Mises strain. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved
1) Design of new Ti-based biomaterials by using ab-initio simulations, FEM, and experiments 2) Detailed analysis of an indent
Motivation Theoretical methods Experimental methods Results Conclusion
- …