305 research outputs found

    Efimov Trimer Formation via Ultracold Four-body Recombination

    Full text link
    We discuss the collisional formation of Efimov trimers via ultracold four-body recombination. In particular, we consider the reaction A+A+A+B->A3+B with A and B ultracold atoms. We obtain expressions for the four-body recombination rate and show that it reflects the three-body Efimov physics either as a function of collision energy or as a function of the two-body s-wave scattering length between A atoms. In addition, we briefly discuss issues important for experimentally observing this interesting and relatively unexplored process.Comment: 5 pages, 3 figure

    Cold three-body collisions in hydrogen-hydrogen-alkali atomic system

    Full text link
    We have studied hydrogen-hydrogen-alkali three-body systems in the adiabatic hyperspherical representation. For the spin-stretched case, there exists a single XXH molecular state when XX is one of the bosonic alkali atoms: 7^7Li, 23^{23}Na, 39^{39}K, 87^{87}Rb and 133^{133}Cs. As a result, the {\em only} recombination process is the one that leads to formation of XXH molecules, H+H+XX→\rightarrowXXH+H, and such molecules will be stable against vibrational relaxation. We have calculated the collision rates for recombination and collision induced dissociation as well as the elastic cross-sections for H+XXH collisions up to a temperature of 0.5 K, including the partial wave contributions from JΠJ^\Pi=0+0^+ to 5−5^-. We have also found that there is just one three-body bound state for such systems for JΠJ^\Pi=0+0^+ and no bound states for higher angular momenta.Comment: 10 pages, 5 figures, 4 table

    Influence of the initial angular distribution on strong-field molecular dissociation

    Get PDF
    Citation: Yu, Y. L., Zeng, S., Hernandez, J. V., Wang, Y. J., & Esry, B. D. (2016). Influence of the initial angular distribution on strong-field molecular dissociation. Physical Review A, 94(2), 6. doi:10.1103/PhysRevA.94.023423We study few-cycle, strong-field dissociation of aligned H-2(+) by solving the time-dependent Schrodinger equation including rotation. We examine the dependence of the final angular distribution, the kinetic energy release spectrum, and the total dissociation yield on the initial nuclear angular distribution. In particular, we look at the dependence on the relative angle theta(0) between the laser polarization and the symmetry axis of a well-aligned initial distribution, as well as the dependence on the delay between the "pump" pulse that prepares the alignment and the few-cycle probe pulse. Surprisingly, we find the dissociation probability for theta(0) = 90 degrees can be appreciable even though the transitions involved are purely parallel. We therefore address the limits of the commonly held "ball-and-stick" picture for molecules in intense fields as well as the validity of the axial recoil approximation

    Quantum Liouville theory and BTZ black hole entropy

    Full text link
    In this paper I give an explicit conformal field theory description of (2+1)-dimensional BTZ black hole entropy. In the boundary Liouville field theory I investigate the reducible Verma modules in the elliptic sector, which correspond to certain irreducible representations of the quantum algebra U_q(sl_2) \odot U_{\hat{q}}(sl_2). I show that there are states that decouple from these reducible Verma modules in a similar fashion to the decoupling of null states in minimal models. Because ofthe nonstandard form of the Ward identity for the two-point correlation functions in quantum Liouville field theory, these decoupling states have positive-definite norms. The explicit counting from these states gives the desired Bekenstein-Hawking entropy in the semi-classical limit when q is a root of unity of odd order.Comment: LaTeX, 33 pages, 4 eps figure
    • …
    corecore