316 research outputs found

    Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening

    Get PDF
    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling

    Review of experimental methods to determine spontaneous combustion susceptibility of coal – Indian context

    Get PDF
    This paper presents a critical review of the different techniques developed to investigate the susceptibility of coal to spontaneous combustion and fire. These methods may be sub-classified into the two following areas: (1) Basic coal characterisation studies (chemical constituents) and their influence on spontaneous combustion susceptibility. (2) Test methods to assess the susceptibility of a coal sample to spontaneous combustion. This is followed by a critical literature review that summarises previous research with special emphasis given to Indian coals

    4D Numerical Analysis of Scaffolds: A New Approach

    Get PDF
    A large range of biodegradable polymers are used to produce scaffoldsfor tissue engineering, which temporarily replace the biomechanical functions ofa biologic tissue while it progressively regenerates its capacities. However, the mechanicalbehavior of biodegradable materials during its degradation, which is an importantaspect of the scaffold design, is still an unexplored subject. For a biodegradablescaffold, performance will decrease along its degradation, ideally in accordanceto the regeneration of the biologic tissue, avoiding the stress shielding effect or thepremature rupture. In this chapter, a new numerical approach to predict the mechanicalbehavior of complex 3D scaffolds during degradation time (the 4th dimension)is presented. The degradation of mechanical properties should ideally be compatibleto the tissue regeneration. With this new approach, an iterative process of optimizationis possible to achieve an ideal solution in terms of mechanical behavior anddegradation time. The scaffold can therefore be pre-validated in terms of functionalcompatibility. An example of application of this approach is demonstrated at the endof this chapter
    • …
    corecore