573 research outputs found

    Producers' Use of Crop Borders for Management of Potato Virus Y (PVY) in Seed Potatoes

    Get PDF
    Potato virus Y (PVY) is a very serious problem throughout most major seed potato producing states. Seed potato producers in Minnesota and North Dakota were surveyed in early 2005 to assess their perception of the profitability and risks associated with using crop borders to manage PVY in seed lots. Five of the 23 producers responding (a 25% response rate) said they had used crop borders in 2004. These 23 producers entered 152 seed lots into state seed certification programs. On average, producers had less than 0.1 seed lots rejected for PVY based on summer inspection. The average number of seed lots rejected in winter trials was 1.7. Of the 152 seed lots, these producers said they had entered into state seed certification programs, they reported detailed information on 108 lots. Generations 1 and 2 were the most likely generations to be protected by a crop border. Of these 108 seed lots, 104 passed summer inspection for PVY. Seventy-four percent of the 89 lots sent in for the winter test were reported to have passed. The use of crop borders was significant in explaining whether a seed lot had passed the winter test or not. Thirty-one (97%) of the 32 seed lots that were planted within a crop border passed the winter test while 31 (54%) of the 57 seed lots that were not planted with a crop border passed the winter test. No relationship was found between the choice of border crop and passing the winter test. Producers also were asked to state their agreement or disagreement with several statements regarding their knowledge and opinions on use of crop borders.Crop Production/Industries,

    ECONOMIC ANALYSIS OF USING A BORDER TREATMENT FOR REDUCING ORGANOPHOSPHATE USE IN SEED POTATO PRODUCTION

    Get PDF
    Recent research shows initial colonization of potato fields by winged green peach aphid is concentrated at field edges. This suggests that insecticides applied only to field margins during initial colonization would largely eliminate a colonizing aphid population, conserve natural enemies in the field center, and reduce insecticide use. To better understand the costs and benefits of reducing organophosphate use, the six participating growers were interviewed to ascertain their reason for participating and their satisfaction with the border only treatment method as well as their estimated net economic benefits. Five of the farms ranked cost reduction as the most important reason for participating. The sixth farm ranked reducing virus spread as the most important reason with cost reduction as their second most important reason. The average cost savings over all 28 participating fields of using the border treatment is estimated to be $23.85 per acre for the entire field-a 93% savings. Almost all the farmers found the border treatment method to be successful at aphid control. None of the farmers observed any impact on the physical yield of seed potato. All the fields were certified during the summer except for one of Farmer F's fields that was lost because of off type. In conclusion, the border treatment method seems likely to be adopted by many farmers since the potential cost saving is large and farmers dislike Monitor. However, some farmers may resist the method due to scouting requirements and costs. Also, farmers with fields that do not meet the uniformity requirements of the border treatment will not be successful in their use of the border method.Crop Production/Industries,

    Epigenetic Response to Habitat Change: Changes Variation in DNA Methylation Frequencies and Generational Transmission Vary with Invasion Status

    Get PDF
    Epigenetic mechanisms may be important for a native species’ response to rapid environmental change. Red Imported Fire Ants (Solenopsis invicta Santschi, 1916) were recently introduced to areas occupied by the Eastern Fence Lizard (Sceloporus undulatus Bosc & Daudin, 1801). Behavioral, morphological and physiological phenotypes of the Eastern Fence Lizard have changed following invasion, creating a natural biological system to investigate environmentally induced epigenetic changes. We tested for variation in DNA methylation patterns in Eastern Fence Lizard populations associated with different histories of invasion by Red Imported Fire Ants. At methylation sensitive amplified fragment length polymorphism loci, we detected a higher diversity of methylation in Eastern Fence Lizard populations from Fire Ant uninvaded versus invaded sites, and uninvaded sites had higher methylation. Our results suggest that invasive species may alter methylation frequencies and the pattern of methylation among native individuals. While our data indicate a high level of intrinsic variability in DNA methylation, DNA methylation at some genomic loci may underlie observed phenotypic changes in Eastern Fence Lizard populations in response to invasion of Red Imported Fire Ants. This process may be important in facilitating adaptation of native species to novel pressures imposed by a rapidly changing environment

    An evidence-based definition of anemia for singleton, uncomplicated pregnancies

    Get PDF
    BACKGROUND: The definition for anemia in pregnancy is outdated, derived from Scandinavian studies in the 1970\u27s to 1980\u27s. To identity women at risk of blood transfusion, a common cause of Severe Maternal Morbidity, a standard definition of anemia in pregnancy in a modern, healthy United States cohort is needed. OBJECTIVE: To define anemia in pregnancy in a United States population including a large county vs. private hospital population using uncomplicated patients. MATERIALS AND METHODS: Inclusion criteria were healthy women with the first prenatal visit before 20 weeks. Exclusion criteria included preterm birth, preeclampsia, hypertension, diabetes, short interval pregnancy (\u3c18 months), multiple gestation, abruption, and fetal demise. All women had iron fortification (Ferrous sulfate 325 mg daily) recommended. The presentation to care and pre-delivery hematocrits were obtained, and the percentiles determined. A total of 2000 patients were included, 1000 from the public county hospital and 1000 from the private hospital. Each cohort had 250 patients in each 2011, 2013, 2015, and 2018. The cohorts were compared for differences in the fifth percentile for each antepartum epoch. Student\u27s t-test and chi-squared statistical tests were used for analysis, p-value of ≤0.05 was considered significant. RESULTS: In the public and private populations, 777 and 785 women presented in the first trimester while 223 and 215 presented in the second. The women at the private hospital were more likely to be older, Caucasian race, nulliparous, and present earlier to care. The fifth percentile was compared between the women in the private and public hospitals and were clinically indistinguishable. When combining the cohorts, the fifth percentile for hemoglobin/hematocrit was 11 g/dL/32.8% in the first trimester, 10.3 g/dL/30.6% in the second trimester, and 10.0 g/dL/30.2% pre-delivery. CONCLUSIONS: Fifth percentile determinations were made from a combined cohort of normal, uncomplicated pregnancies to define anemia in pregnancy. Comparison of two different cohorts confirms that the same definition for anemia is appropriate regardless of demographics or patient mix

    Comparison of ecosystem processes in a woodland and prairie pond with different hydroperiods

    Get PDF
    Shallow lakes and ponds constitute a significant number of water bodies worldwide. Many are heterotrophic, indicating that they are likely net contributors to global carbon cycling. Climate change is likely to have important impacts on these waterbodies. In this study, we examined two small Minnesota ponds; a permanent woodland pond and a temporary prairie pond. The woodland pond had lower levels of phosphorus and phytoplankton than the prairie pond. Using the open water oxygen method, we found the prairie pond typically had a higher level of gross primary production (GPP) and respiration (R) than the woodland pond, although the differences between the ponds varied with season. Despite the differences in GPP and R between the ponds the net ecosystem production was similar with both being heterotrophic. Since abundant small ponds may play an important role in carbon cycling and are likely to undergo changes in temperature and hydroperiod associated with climate change, understanding pond metabolism is critical in predicting impacts and designing management schemes to mitigate changes

    A Simple Method for In-Field Sex Determination of the Multicolored Asian Lady Beetle Harmonia axyridis

    Get PDF
    The multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), has become a popular study organism due to its promise as a biological control agent and its potential adverse, non-target impacts. Behavioral and ecological research on H. axyridis, including examinations of its impacts, could benefit from non-destructive or non-disruptive sexing techniques for this coccinellid. External morphological characters were evaluated for H. axyridis (succinea color form) sex determination in laboratory and field studies. The shape of the distal margin of the fifth visible abdominal sternite accurately predicted H. axyridis sex for all beetles examined. Males consistently had a concave distal margin, while females had a convex distal margin. In addition, pigmentation of the labrum and prosternum were both significantly associated with H. axyridis sex; males had light pigmentation and females had dark pigmentation. Labrum and prosternum pigmentation increased from light to dark with decreasing rearing temperature and increasing time after adult eclosion for females. Male pigmentation was only affected by a decrease in rearing temperature. Validation through in-field collections indicated that these predictors were accurate. However, labrum pigmentation is a more desirable character to use to determine sex, because it is more accurate and easily accessible. Therefore, we recommend using labrum pigmentation for in-field sex determination of H. axyridis. Implications of this diagnostic technique for applied and basic research on this natural enemy are discussed

    Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    Get PDF
    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO(2)) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO(2) equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO(2) equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO(2) equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    Anaerobic digestion of whole-crop winter wheat silage for renewable energy production

    No full text
    With biogas production expanding across Europe in response to renewable energy incentives, a wider variety of crops need to be considered as feedstock. Maize, the most commonly used crop at present, is not ideal in cooler, wetter regions, where higher energy yields per hectare might be achieved with other cereals. Winter wheat is a possible candidate because, under these conditions, it has a good biomass yield, can be ensiled, and can be used as a whole crop material. The results showed that, when harvested at the medium milk stage, the specific methane yield was 0.32 m3 CH4 kg–1 volatile solids added, equal to 73% of the measured calorific value. Using crop yield values for the north of England, a net energy yield of 146–155 GJ ha–1 year–1 could be achieved after taking into account both direct and indirect energy consumption in cultivation, processing through anaerobic digestion, and spreading digestate back to the land. The process showed some limitations, however: the relatively low density of the substrate made it difficult to mix the digester, and there was a buildup of soluble chemical oxygen demand, which represented a loss in methane potential and may also have led to biofoaming. The high nitrogen content of the wheat initially caused problems, but these could be overcome by acclimatization. A combination of these factors is likely to limit the loading that can be applied to the digester when using winter wheat as a substrat
    • …
    corecore