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Abstract

Greenhouse gas emissions associated with pesticide applications against invasive species constitute an
environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas
emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis
glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in
soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results
in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of
soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of
CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest
population size. Emissions would be higher were it not for the development of a threshold aphid density below which
farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows
farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial.
We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300
million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that
biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over
half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in
annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions
between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.
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Introduction

Many pest organisms reach their most damaging levels away
from their native geographic range. This general pattern has
been documented for weeds [1], insect pests [2], and
pathogens [3,4] among others. Extensive bodies of literature
have developed around both the causes and consequences of
invasive pests [5–7]. Although invasive species can cause
considerable economic and ecological damage [8–10], biotic
resistance by competitors and consumers of introduced
species can greatly attenuate this damage (e.g. [11–13]). Here,

we consider the implications of an invasive agricultural pest for
greenhouse gas emissions associated with controlling the pest.
Our goal is to estimate the actual emission costs incurred by
the invasion as well as the hypothetical emissions that would
occur in the absence of biotic resistance in the form of naturally
occurring biological control. This allows an estimation of the
role of biological control in attenuating greenhouse gas
emissions of an invasive pest.

Numerous recent analyses link global climate change to
invasive species (e.g. [14–16]). Most of these analyses focus
on effects of climate change on the spread or consequences of
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invasive species, but the converse of this relationship - effects
of invasive species on climate change – remains virtually
unexplored. The only such analysis of which we are aware is
the one by Kurz et al. [17], which showed how climate change-
induced spread of bark beetles in Canada can lead to reduced
carbon sequestration. Our analysis highlights another effect of
invasive species on climate change: impacts of invasive
species on greenhouse gas emissions. By virtue of their
increased abundance in introduced ranges, invasive pests
require disproportionately high levels of management
intervention, including efforts at eradication and control [8]. We
focus on greenhouse gas emissions associated with insecticide
use to control the soybean aphid, Aphis glycines, a recent
invasive agricultural pest in North America.

The soybean aphid is native to eastern Asia and was first
detected in North America in the summer of 2000. Although
insect predators are important in reducing the damaging effects
of the soybean aphid, this insect has emerged as the most
important pest of soybeans in North America [18]. Management
of the soybean aphid has been primarily through application of
insecticides although alternative management tactics including
host-plant resistance and the importation of Asian biological
control agents are also under development [18–20].

Our aim in this paper is to calculate the life cycle greenhouse
gas emissions associated with insecticide use against the
soybean aphid in the United States, taking into account
insecticide manufacture, transport, and application. Other
researchers have prepared energy budgets and have
estimated greenhouse emissions for various agricultural
practices including pesticide use [21–25], but to our knowledge
this is the first analysis focused on a particular pest species.
We also consider the extent to which economic spray
thresholds [26,27] and naturally occurring biological control
(e.g. [28–31]) can mitigate carbon emissions associated with
soybean aphid control.

Analysis and Results

Our estimate of life cycle greenhouse gas emissions induced
by chemical control of soybean is divided into emissions
associated with insecticide manufacture, transport, and
application. We use estimates of insecticide application
associated with soybean aphid control from the United States
Department of Agriculture National Agricultural Statistics
Service (USDA NASS) Agricultural Chemical Usage Field
Crops Summary databases. These databases provide state-
level data on quantities applied (L ha-1) and acreage (ha)
treated and are available for insecticide use in soybeans from
1991 through 2002 and from 2004 through 2006. We focus
exclusively on the 12 states within the North-central region of
the U.S., as defined by USDA NASS – Illinois, Indiana, Iowa,
Kansas, Michigan, Minnesota, Missouri, Nebraska, North
Dakota, Ohio, South Dakota and Wisconsin. The rationale for
not including data from other states is that farmers in some
other states, particular in the southeastern U.S., apply
insecticides against insect pests other than the soybean aphid
[32–34]. Soybean acreage in the North-Central states, on the
other hand, received almost no insecticide application prior to

the arrival of soybean aphid. It is therefore likely that most if not
all of the application of insecticides in these states following the
arrival of soybean aphid was directed at soybean aphid [18,26].
The 12 states used in our analysis cover approximately 80% of
the approximately 38 million hectares of soybeans planted
each year in the U.S.

Manufacture
We used information on the amount of active ingredient (A.I.)

of insecticide applied per year against soybean aphid to
estimate emissions associated with insecticide manufacture
and transport. The amounts of insecticide applied were too low
to be reported by USDA NASS between 1991 and 1998
although some acreage was reported treated in 1991 and 1992
(Figure 1). In 1999 – the year before soybean aphid was
detected in North America -15,400 kg of insecticides were
applied to soybeans in North-Central states against other
insects. The figure was about one-third of this amount in 2000
but then increased to almost 0.9 million kg by 2006 (Figure 1).

The main insecticides used against soybean aphid were
chlorpyrifos (an organophosphate), lambda-cyhalothrin, and
esfenvalerate (both pyrethroids) with lesser use of zeta-
cypermethrin and permethrin (both pyrethroids as well). The
relative percentages of chlorpyrifos, lambda-cyhalothrin, and
esfenvalerate used over the entire reporting period were 38%,
47%, and 15%, respectively, according to the USDA NASS
database. All three compounds are broad-spectrum
insecticides that exhibit high toxicity to honeybees, other
beneficial insects including biological control agents of aphids,
and vertebrates (e.g. [35–37]). The neonicotinoid class of
insecticides are used as a seed treatment targeting soybean
aphid as well [38,39] but these compounds are not tracked by
USDA NASS, so we do not consider them here.

Figure 1.  Millions of kilograms of insecticide (grey bars)
and millions of hectares onto which insecticides were
sprayed (black bars) at least once in 12 North-central
states in the U.S. (IL, IN, IA, KS, MI, MN, MO, NE, ND, OH,
SD, WI) between 1991 and 2006.  Data are from the U.S.
Department of Agriculture National Agricultural Service, from
which data on insecticide use in soybeans were available for
the years 1991-2002 and 2004-2006.
doi: 10.1371/journal.pone.0072293.g001
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Energy inputs associated with insecticide manufacture
include the raw materials themselves, which are typically
petroleum or natural gas, and the transformation of these
materials into insecticides using a variety of energy-intensive
industrial processes [25]. A life cycle analysis also includes
energy inputs needed to build manufacturing plants and related
operations, as well as those needed to extract the fuel needed
for manufacture. Green [25] was the first to construct life cycle
energy budgets for pesticide manufacture with these principles
in mind and his analyses, although only approximations, have
been used by a number of authors and remain the most
reliable estimates to date [40–42]. Green [25] produced
estimates for 39 commonly used pesticides, 11 of which are
insecticides. These compounds did not include the three foliar
insecticides used against soybean aphid noted above, but
other organophosphates and pyrethroids were represented.
Our approach here is to use the information provided by Green
[25] for insecticides belonging to the same class of compounds
in our analysis of the manufacture of soybean aphid
insecticides. Specifically, we use Green’s energy values for
cypermethrin to approximate values for lambda cyhalothrin and
esfenvalerate since all three are classified as fourth-generation
pyrethroids [43] or as Type II pyrethroids based upon their
chemical structure [44]. To approximate energy use associated
with chlorpyrifos, we use Green’s values for methyl parathion
since both insecticides are classified in the same subclass of
organophosphate insecticides, the phosphorothiolates [44].

The estimate of energy inputs provided by Green [25]
reported proportions of different energy and material inputs
used to manufacture various pesticides. Here we convert
Green’s estimates associated with manufacturing and transport
to their greenhouse gas emissions factors. Green’s analyses
reported energy use in joules, from which we derive estimates
of CO2 equivalent (CO2e) greenhouse gas emissions based
upon global warming potential. The three main greenhouse
gasses are CO2, methane (CH4), and nitrous oxide (N2O),
which have default standardized 100-year global warming
potentials of 1, 25, and 298, respectively [45]. Further, Green
included both process energy (fuel oil, electricity, and steam)
used or combusted on-site, and inherent energy (naphtha,
natural gas, and coke) used as material feedstock and these
processes require different conversion factors to CO2e. For

process-energy related greenhouse gas emissions, we applied
the following emission conversion factors: 0.090 kg CO2e MJ-1

for fuel oil, 0.095 kg CO2e MJ-1 for steam generated from fuel
oil and 0.772 kg CO2e kWh-1 for electricity. These emission
factors were taken from the Ecoinvent v. 2.2 database [http://
www.ecoinvent.ch/] reflecting US emissions. For feedstock-
associated GHG emissions, we applied the following emission
factors: 0.005 kg CO2e MJ-1 for naphtha, 0.016 kg CO2e MJ-1

for natural gas and 0.018 kg CO2e MJ-1 for coke (Greenhouse
Gases, Regulated Emissions and Energy Use in Transportation
Model (GREET); http://greet.es.anl.gov/). Finally, to estimate
the eventual acreage onto which insecticides were applied in
the field based on the documented manufacture rates (Figure
1), we used the application rates from insecticide labels to
estimate the amount of active ingredient of each insecticide
used per hectare.

The values and calculations outlined above are presented in
Table 1 for the three foliar insecticides commonly used against
soybean aphid. Based on the relative use of these insecticides,
and their application rates, our calculations lead to an estimate
of 6.93 kg of CO2e greenhouse gasses emitted per hectare
sprayed. These analyses illustrate the differences in emissions
associated with the different insecticide classes. For instance,
while the manufacture of pyrethroids (such as lambda
cyhalothrin and esfenvalerate) is more energy intensive than
manufacture of organophosphates (such as chlorpyifos), the
much lower application rate of pyrethroids [46] offsets this
difference so that the pyrethroids result in lower per-hectare
emissions (Table 1).

Transportation
Energy inputs associated with the transportation of

insecticides from the manufacturing plant to the farm includes
three steps: (1) transport from the plant to a distribution center,
(2) transport from the center to a mixing facility where
ingredients are combined, and (3) transport from the mixing
facility to the farm. An analysis by Wang [47] estimated 837 km
for the one-way distance for step (1) based upon the typical
regional distribution of insecticide manufacturing plants and we
use this estimate for our analysis. Wang further assumed that
this transport would typically be achieved by barge or rail

Table 1. Summary of life cycle analysis for greenhouse gas emissions associated with the manufacture and transportation of
foliar insecticides against the soybean aphid in the United States.

Soybean aphid
insecticide (relative
use)

Corresponding
compound

Total energy
inputs (MJ/
kg)a

kg CO2e/ kg A.I.:
Manufacture

kg CO2e/kg A.I.:
Transportation

Application rate
(kg [A.I.]/Ha)

Kg CO2e/Ha:
Manufacture

kg CO2 e/ha:
Transport

kg CO2e/Ha:
Manufacture +
Transport

Lambda cyhalothrin
(0.47)

Cypermethrin 580.000 65.165 0.082 0.022 1.434 0.002 1.436

Esfenvalerate (0.15) Cypermethrin 580.000 65.165 0.082 0.045 2.934 0.004 2.938
Chlorpyrifos (0.38) Methyl Parathion 160.000 18.198 0.082 0.841 15.306 0.069 15.376
Totals weighted by
relative use

 420.400 47.340 0.082  6.931 0.028 6.958

a from Green (1987).
‘Corresponding compound’ refers to the insecticides most closely related to ones used against soybean aphid for which Green (1987) calculated energy inputs (see text).
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transport, which have very similar GHG emissions (0.046 and
0.050 kg CO2e per ton*km, respectively; Ecoinvent v. 2.2).
Steps (2,3) were estimated to be 80 and 48 km respectively,
with corresponding GHG emissions of 0.134 and 0.239 kg
CO2e per ton*km respectively, based upon the type of trucks
typically used for these steps (Ecoinvent v. 2.2). Total
emissions associated with these transportation steps converted
to CO2 equivalents per hectare eventually sprayed are shown
in Table 1. The overall value, weighted by the insecticides used
is just under 0.03 kg CO2e ha-1, thus bringing the emissions
associated with both manufacture and transportation to 6.96 kg
CO2e ha-1 (Table 1).

Application
Greenhouse gas emissions associated with insecticide

application are a function of the total acreage sprayed and the
number of applications per year. In the 9 years prior to the
arrival of soybean aphid, between 0 and 90,500 hectares of
soybeans received insecticides in the North-Central U.S.
(average between 1991 and 1999 = 24,700 hectares per year).
Between 2000 and 2006, however, soybean acreage receiving
insecticides increased to a maximum of 3.85 million hectares
per year in 2006 (average between 2000 and 2006 excluding
2003, for which there is no data = 1.4 million hectares per
year). The acreage sprayed in 2006 represented 19% of the
total soybean acreage in the 12 North-Central states.
According to USDA NASS, applications were made once per
year in individual fields, with multiple applications rarely
recorded. For simplicity, we therefore based our calculations on
a single application per year.

Ground application was the dominant mode of insecticide
application against soybean aphid [48] and many farmers in the
region purchased specialized spray equipment for tractors in
response to soybean aphid [26]. Furthermore, Helsel [23] noted
that the energy used for ground and air application of
pesticides is similar on large acreages. For simplicity we
therefore base our calculations on ground application only.

To estimate emissions associated with ground application,
we used values from the GREET database [24]. The GREET
estimate of emissions due to application of any insecticide is
3.60 kg CO2e greenhouse gases per hectare, which is due to
the use of diesel fuel, which is estimated at 1.2 liters per
hectare for tractor-drawn sprayers [49]. The practice of ‘tank-
mixing’ insecticides with herbicides, fertilizers and fungicides
can lead to a lower level of applications dedicated to insecticide
use. In one estimate, tank-mixing with the herbicide glyphosate
accounted for nearly 40% of soybean aphid insecticide
applications in 2007 [48], with much lower incidence of tank-
mixing with fertilizer and undocumented levels of mixing with
fungicide. However, these practices were not widely used
during the time of our analyses [48] and they are not
recommended because of reduced effectiveness of the
insecticide [50].

In Figure 2, we show the estimated total CO2 equivalent
greenhouse gases emitted per year due to manufacture,
transportation and application of active ingredients of foliar
insecticide against soybean aphid based upon acreage treated
from Figure 1. We estimated that the use of foliar insecticides

against the soybean aphid in the United States leads to
approximately 10.6 kg of CO2 equivalent GHGs emitted per
hectare sprayed -7.0 kg from insecticide manufacture and
transport, and 3.6 kg from the application process.

Spray thresholds and biological control
A number of factors can mitigate insecticide use against

soybean aphid, maintaining greenhouse gas emissions below
what they otherwise would be. These include the development
of a spray threshold for soybean aphid and the action of aphid
consumers in suppressing soybean aphid below the threshold
level. An economic spray threshold is the pest density at which
a farmer must spray to avoid economic yield loss exceeding
the cost of the application. In the absence of a threshold,
farmers tend to spray on a schedule even when the pest is
absent or at very low levels. For soybean aphid, a study done
across the North-Central region of the U.S. calculated a
threshold of 250 aphids per plant [26]. This threshold began to
be disseminated in 2004 and was increasingly adopted
throughout the region, replacing prophylactic treatment which
leads to unnecessary application [27,48].

One of the main reasons that pest densities remain below
threshold levels is that they are consumed by natural enemies.
The role of naturally occurring predators and parasitoids in
maintaining soybean aphid below the 250 per-plant threshold
has been determined [30,51], and the extent to which these
‘biocontrol services’ lead to reductions in insecticide use has
been calculated [52]. These analyses suggested that between
60 and 100% of soybean fields would exceed threshold levels
in the absence of natural biological control and insecticide use,
depending on aphid pressure in a particular year. In contrast,
only 0-30% of fields actually exceeded threshold in the

Figure 2.  Estimates of emissions of CO2e greenhouse
gases in millions of kilograms associated with the use of
foliar insecticides against the soybean aphid in the United
States.  Estimates are provided for the years since soybean
aphid was first detected in the U.S. and estimates of insecticide
usage were reported by the United States Department of
Agriculture National Agricultural Statistics Service (USDA
NASS).
doi: 10.1371/journal.pone.0072293.g002
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presence of aphid natural enemies, primarily lady beetles in
these studies. This latter range of values encompasses the
status quo and illustrates the value of the threshold over
prophylactic treatments (i.e. preventative spraying in every
field). Over the 30 million hectares of soybeans in the North-
Central U.S., prophylactic spraying would result in emissions of
318 million kg CO2e greenhouse gases; full adoption of the
threshold would reduce this by 70-100%.

Using a spray threshold allows for biological control to
drastically reduce the need for insecticide applications. If we
assume that 80% of the acreage would exceed threshold in the
absence of aphid enemies in a typical year and 15% in the
presence of enemies [52], CO2e greenhouse gas emissions
would decrease from an estimated 254 million kg to 48 million
kg per year within the North-Central U.S. (assuming again that
30 million hectares are planted to soybeans in this region). This
implies that the action of natural enemies of aphids coupled
with the use of a spray threshold reduces greenhouse gas
emissions by approximately 207 million kg of CO2e per year.

Discussion

We estimated emissions of 10.6 kg CO2 equivalent
greenhouse gasses per hectare of soybeans sprayed with
insecticides against the soybean aphid, an insect pest native to
Asia that invaded North America in the year 2000. These
values are similar to estimates for emissions associated with
insecticide use by other authors [22,23]. Since the invasion of
soybean aphid, insecticide use in soybeans in the North-
Central United States has increased from less than 25,000
hectares per year prior to 2001 to levels approaching 4 million
hectares in 2006. The USDA NASS database estimates that
insecticides have been used against soybean aphid on a total
of 8.32 million hectares during the years 2001, 2002, 2004,
2005, and 2006 (data for other years following the soybean
aphid invasion are not available). Our estimate of GHG
emissions attributable to insecticide use directed at soybean
aphid for these years in the United States is therefore 87.2
million kg CO2e, or an average of 17.4 million kg CO2e
greenhouse gases per year during this period. As a point of
reference, this annual amount of emissions is equivalent to
CO2e produced by the burning of approximately 7.4 million
liters of gasoline, and could be offset by CO2 sequestration
achieved by approximately 5,800 hectares of U.S. forest land
per year (U.S. E. PA. Greenhouse Gas Equivalencies
Calculator; updated Oct. 2012; http://www.epa.gov/
cleanenergy/energy-resources/calculator.html).

The magnitude of these emissions would be far greater were
it not for biological control of the soybean aphid, and an
economic spray threshold that allows farmers to take
advantage of biological control and other factors that limit
soybean aphid populations. Using existing data [30,52] we
estimated that the spray threshold reduced potential emissions
as much as 300 million kg CO2e greenhouse gases per year
and that reductions of emissions due to biological control
maintaining aphid densities below the threshold at over 200
million kg CO2e. This amount of emissions reduction is
equivalent burning approximately 88 million liters of gasoline or

to sequestration achieved by 68,700 hectares of U.S. forest
land (U.S. E.P.A. Greenhous Gas Equivalencies Calculator).
While a number of economic and ecological benefits have been
attributed to biological control [53–57], this is the first
consideration of benefits accruing through reduction of
greenhouse gas emissions.

Our estimate of emissions attributable to soybean aphid
management is conservative for a number of reasons. First,
our per-hectare estimates of insecticide manufacture
underestimate emissions because only the active ingredient is
included. Additives such as adjuvants are not included in the
USDA NASS estimates of kg of insecticide use. We also do not
include emissions associated with the use of insecticides
applied as seed treatments, which are primarily the
neonicotinoids. One estimate from 2010 was that 20% of
soybean seeds on the market contained a neonicotinoid seed
treatment, but this is increasing [58]. Greenhouse gas
emissions associated with seed treatments are exclusively due
to manufacturing costs because post-planting application is
avoided, but our analysis showed that the energy required to
manufacture insecticides can exceed the energy used to apply
them. Another source of GHG emissions not included involves
the manufacture and maintenance of specialized equipment for
insecticide application against soybean aphid. It does appear
that many growers purchased a sprayer specifically for use
against soybean aphid [26] and the associated emissions could
reasonably be added to our overall estimate. However, this
equipment could have other uses, notably for fungicide
applications [59], so we have omitted this source of emissions
from our analysis. Lastly, due to data collection limitations our
estimate of total emissions does not include the years 2003,
2007 or 2008, which were characterized by high soybean aphid
densities in at least parts of the region [59,60].

Many pest management tactics that reduce the need to apply
foliar insecticides have the potential to further reduce
greenhouse gas emissions. Three tactics with potential for
such effects are (i) host plant resistance, (ii) cultural control
methods, and (iii) classical biological control. Soybean varieties
that exhibit resistance to soybean aphid have been developed
and have the potential to greatly reduce insecticide use [18]. A
caveat is that strains (“biotypes”) of soybean aphids have been
found that are able to develop normally on resistant soybean
cultivars [20]. Cultural control methods against the soybean
aphid are based on the observation that biological control can
be enhanced by habitat diversification ( [30,61] but see 51,62)
These methods can include cover cropping strategies that
reduce pest pressure [63–65] and thus the need to apply
insecticides, but may also increase some emissions through
increased cultivation or planting. Classical biological control, in
which exotic natural enemies of soybean aphid are imported
from its native range could reduce or even eliminate the need
to apply insecticides if successful [19]. To date however, no
classical biological control has been successfully established
[18,66,67].

We have used information on insecticide applications against
the soybean aphid in the United States to show that invasive
species can lead to significant greenhouse gas emissions that
would not have occurred in the absence of the invasion.
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Invasive species are expected to have implications for the
carbon cycle beyond pesticide use, however, and these include
effects on other management strategies. For example, bacterial
nitrogen fixation in soybeans is reduced by soybean aphid
infestation [68], which could lead to increased nitrogen fertilizer
inputs and attendant greenhouse gas emissions. Invasive
species can also decrease carbon sequestration by plants as
has been shown for bark beetles [17]. Other effects on
sequestration are possible as well, depending upon the
ecological effects of the invading species. Our analysis
highlights the fact that invasive pest species are not only
affected by global climate change, but they can also affect it –
in this case by increasing the greenhouse gas emissions
associated with management tactics.
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