3,067 research outputs found

    Gyroscopic motion of superfluid trapped atomic condensates

    Full text link
    The gyroscopic motion of a trapped Bose gas containing a vortex is studied. We model the system as a classical top, as a superposition of coherent hydrodynamic states, by solution of the Bogoliubov equations, and by integration of the time-dependent Gross-Pitaevskii equation. The frequency spectrum of Bogoliubov excitations, including quantum frequency shifts, is calculated and the quantal precession frequency is found to be consistent with experimental results, though a small discrepancy exists. The superfluid precession is found to be well described by the classical and hydrodynamic models. However the frequency shifts and helical oscillations associated with vortex bending and twisting require a quantal treatment. In gyroscopic precession, the vortex excitation modes m=±1m=\pm 1 are the dominant features giving a vortex kink or bend, while the m=+2m=+2 is found to be the dominant Kelvin wave associated with vortex twisting.Comment: 18 pages, 7 figures, 1 tabl

    Space Shuttle program communication and tracking systems interface analysis

    Get PDF
    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis

    A Unified Quantum NOT Gate

    Full text link
    We study the feasibility of implementing a quantum NOT gate (approximate) when the quantum state lies between two latitudes on the Bloch's sphere and present an analytical formula for the optimized 1-to-MM quantum NOT gate. Our result generalizes previous results concerning quantum NOT gate for a quantum state distributed uniformly on the whole Bloch sphere as well as the phase covariant quantum state. We have also shown that such 1-to-MM optimized NOT gate can be implemented using a sequential generation scheme via matrix product states (MPS)

    Engineering evaluations and studies. Volume 2: Exhibit B, part 1

    Get PDF
    Ku-band communication system analysis, S-band system investigations, payload communication investigations, shuttle/TDRSS and GSTDN compatibility analysis are discussed

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Relativistic precession and spin dynamics of an elliptic Rydberg wave packet

    Get PDF
    Time evolution of wave packets built from the eigenstates of the Dirac equation for a hydrogenic system is considered. We investigate the space and spin motion of wave packets which, in the non-relativistic limit, are stationary states with a probability density distributed uniformly along the classical, elliptical orbit (elliptic WP). We show that the precession of such a WP, due to relativistic corrections to the energy eigenvalues, is strongly correlated with the spin motion. We show also that the motion is universal for all hydrogenic systems with an arbitrary value of the atomic number Z.Comment: Latex2e, uses IOP style files (included), 10 pages, 5 jpg figures, 1 postscript figure. Relation between precession time and radiative liftime added (eq.(12)). Accepted for publication in J. Phys.

    Reference installation for the German grid initiative D-Grid

    Get PDF
    The D-Grid reference installation is a test platform for the German grid initiative. The main task is to create the grid prototype for software and hardware components needed in the D-Grid community. For each grid-related task field different alternative middleware is included. With respect to changing demands from the community, new versions of the reference installation are released every six months

    Temperature dependence of the (π,0)(\pi,0) anomaly in the excitation spectrum of the 2D quantum Heisenberg antiferromagnet

    Full text link
    It is well established that in the low-temperature limit, the two-dimensional quantum Heisenberg antiferromagnet on a square lattice (2DQHAFSL) exhibits an anomaly in its spectrum at short-wavelengths on the zone-boundary. In the vicinity of the (π,0)(\pi,0) point the pole in the one-magnon response exhibits a downward dispersion, is heavily damped and attenuated, giving way to an isotropic continuum of excitations extending to high energies. The origin of the anomaly and the presence of the continuum are of current theoretical interest, with suggestions focused around the idea that the latter evidences the existence of spinons in a two-dimensional system. Here we present the results of neutron inelastic scattering experiments and Quantum Monte Carlo calculations on the metallo-organic compound Cu(DCOO)24_2\cdot 4D2_2O (CFTD), an excellent physical realisation of the 2DQHAFSL, designed to investigate how the anomaly at (π,0)(\pi,0) evolves up to finite temperatures T/J2/3T/J\sim2/3. Our data reveal that on warming the anomaly survives the loss of long-range, three-dimensional order, and is thus a robust feature of the two-dimensional system. With further increase of temperature the zone-boundary response gradually softens and broadens, washing out the (π,0)(\pi,0) anomaly. This is confirmed by a comparison of our data with the results of finite-temperature Quantum Monte Carlo simulations where the two are found to be in good accord. At lower energies, in the vicinity of the antiferromagnetic zone centre, there was no significant softening of the magnetic excitations over the range of temperatures investigated.Comment: Dedicated to the life and work of Professor Roger Cowley. 22 pages, 8 figure

    Superconformal constraints for QCD conformal anomalies

    Get PDF
    Anomalous superconformal Ward identities and commutator algebra in N = 1 super-Yang-Mills theory give rise to constraints between the QCD special conformal anomalies of conformal composite operators. We evaluate the superconformal anomalies that appear in the product of renormalized conformal operators and the trace anomaly in the supersymmetric spinor current and check the constraints at one-loop order. In this way we prove the universality of QCD conformal anomalies, which define the non-diagonal part of the anomalous dimension matrix responsible for scaling violations of exclusive QCD amplitudes at the next-to-leading order.Comment: 30 pages, 2 figures, LaTe
    corecore