129 research outputs found

    Partial Ion Yield Sspectroscopy around the Cl 2p and C 1s Ionization Thresholds in CF3Cl

    Full text link
    We present a partial ion yield experiment on freon 13, CF3Cl, excited in the vicinity of the C 1s and Cl 2p ionization thresholds. We have collected a large amount of cationic fragments and a few anionic fragments at both edges. We have observed a strong intensity dependence of Rydberg transitions with ion fragment size for the CFnCl+ and CFn+/F+ (n=0–3) series at both the Cl 2p and C 1s ionization edges. Selectivity in the fragmentation processes involving the C–Cl and C–F bonds are highlighted by the intensities of the C 1s to lowest unoccupied molecular orbital (LUMO) and LUMO+1 transitions measured on the CFnCl+ and CFn+ yields. Equally, by comparison with their cation counterpart, we discuss possible bond-length dependence for the anion formation at the carbon 1s edge

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s \rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl

    Low-Energy Nondipole Effects in Molecular Nitrogen Valence-Shell Photoionization

    Get PDF
    Observations are reported for the first time of significant nondipole effects in the photoionization of the outer-valence orbitals of diatomic molecules. Measured nondipole angular-distribution parameters for the 3sigmag, 1piu, and 2sigmau shells of N2 exhibit spectral variations with incident photon energies from thresholds to ~200 eV which are attributed via concomitant calculations to particular final-state symmetry waves arising from (E1)[direct-product](M1,E2) radiation-matter interactions first-order in photon momentum. Comparisons with previously reported K-edge studies in N2 verify linear scaling with photon momentum, accounting in part for the significantly enhanced nondipole behavior observed in inner-shell ionization at correspondingly higher momentum values in this molecule

    The X-Ray Atomic and Molecular Spectroscopy Program at the Advanced Light Source

    Get PDF

    Electric-octupole and pure-electric-quadrupole effects in soft-x-ray photoemission

    Get PDF
    Second-order [O(k^2), k=omega/c] nondipole effects in soft-x-ray photoemission are demonstrated via an experimental and theoretical study of angular distributions of neon valence photoelectrons in the 100--1200 eV photon-energy range. A newly derived theoretical expression for nondipolar angular distributions characterizes the second-order effects using four new parameters with primary contributions from pure-quadrupole and octupole-dipole interference terms. Independent-particle calculations of these parameters account for a significant portion of the existing discrepancy between experiment and theory for Ne 2p first-order nondipole parameters.Comment: 4 pages, 3 figure

    Fragmentation of Methyl Chloride Studied by Partial Positive and Negative Ion Yield Spectroscopy

    Full text link
    The authors present partial-ion-yield experiments on the methyl chloride molecule excited in the vicinity of the Cl2p and C1s inner shells. A large number of fragments, cations produced by dissociation or recombination processes, as well as anionic species, have been detected. Although the spectra exhibit different intensity distributions depending on the core-excited atom, general observations include strong site-selective fragmentation along the C–Cl bond axis and a strong intensity dependence of transitions involving Rydberg series on fragment size

    Molecular-orbital Studies Via Satellite-free X-ray Fluorescence: Cl-K Absorption and K–Valence-level Emission Spectra of Chlorofluoromethanes

    Full text link
    X-ray absorption and emission measurements in the vicinity of the chlorine K edge of the three chlorofluoromethanes have been made using monochromatic synchrotron radiation as the source of excitation. By selectively tuning the incident radiation to just above the Cl 1s single-electron ionization threshold for each molecule, less complex x-ray-emission spectra are obtained. This reduction in complexity is attributed to the elimination of multielectron transitions in the Cl K shell, which commonly produce satellite features in x-ray emission. The resulting satellite-free x-ray-emission spectra exhibit peaks due only to electrons in valence molecular orbitals filling a single Cl 1s vacancy. These simplified emission spectra and the associated x-ray absorption spectra are modeled using straightforward procedures and compared with semiempirical ground-state molecular-orbital calculations. Good agreement is observed between the present experimental and theoretical results for valence-orbital energies and those obtained from ultraviolet photoemission, and between relative radiative yields determined both experimentally and theoretically in this work

    Nondipole Resonant X-ray-Raman Spectroscopy: Polarized Inelastic Scattering at the K Edge of Cl2

    Full text link
    Experimental and theoretical studies are reported on the inelastic (Raman) scattering of wavelength-selected polarized x rays from the K edge of gas-phase chlorine molecules. The polarized emission spectra exhibit prominent nondipole features consequent of phase variations of the incident and emitted radiation over molecular dimensions, as predicted by the Kramers-Heisenberg scattering formalism. Issues pursuant to the detection of core-hole localization by resonant Raman scattering from homonuclear diatomic molecules are critically examined. [S0031-9007(97)03486-8

    Reply to Comment on ‘Nondipole Resonant X-ray-Raman Spectroscopy: Polarized Inelastic Scattering at the K Edge of Cl2,’

    Full text link
    Mills et al. Reply: In their Comment on our Letter [1], Gel’mukhanov and Ågren [2] reiterate recent assertions [3] based on their earlier theoretical studies [4]. The primary purpose of their Comment is apparently to refute our stated conclusion that core-excited-state localization/ delocalization mechanisms are irrelevant to interpretations of reported Raman scattering experiments on homonuclear diatomic molecules

    Polarized X-ray-emission Studies of Methyl Chloride and the Chlorofluoromethanes

    Full text link
    A new technique sensitive to molecular orientation and geometry, and based on measuring the polarization of x-ray emission, has been applied to the Cl-containing molecules methyl chloride (CH3Cl) and the chlorofluoromethanes (CF3Cl, CF2Cl2, and CFCl3) in the gas phase. Upon selective excitation using monochromatic synchrotron radiation in the Cl K-edge (Cl 1s) near-threshold region, polarization-selective x-ray emission studies reveal highly polarized molecular valence x-ray fluorescence for all four molecules. The degree and the orientation of the polarized emission are observed to be sensitive to the incident excitation energy near the Cl Kedge. In some cases, the polarization direction for x-ray emission reverses for small changes in incident excitation energy (a few eV). It is shown that the polarized x-ray emission technique can be used to infer, directly from experiment, symmetries of occupied and unoccupied valence molecular orbitals, an- isotropies in absorption and emission, and orientational and geometrical information. It is suggested that the x-ray polarized-fluorescence phenomenon, reported here for simple molecules, can be used as a new approach to study more complicated systems in a variety of environments
    corecore