771 research outputs found

    Temperature regulation circuit Patent

    Get PDF
    Device for rapid adjustment and maintenance of temperature in electronic component

    Is the structure of 42Si understood?

    Get PDF
    A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier comparisons of excited-state energies -- is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying \nuc{42}{Si}(21+2^+_1) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from \nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the individual \nuc{42}{Si} final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0+0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the (02+0^+_2) level.Comment: accepted in Physical Review Letter

    Passive scalars, random flux, and chiral phase fluids

    Full text link
    We study the two-dimensional localization problem for (i) a classical diffusing particle advected by a quenched random mean-zero vorticity field, and (ii) a quantum particle in a quenched random mean-zero magnetic field. Through a combination of numerical and analytic techniques we argue that both systems have extended eigenstates at a special point in the spectrum, EcE_c, where a sublattice decomposition obtains. In a neighborhood of this point, the Lyapunov exponents of the transfer-matrices acquire ratios characteristic of conformal invariance allowing an indirect determination of 1/r1/r for the typical spatial decay of eigenstates.Comment: use revtex, two-column, 4 pages, 5 postscript figures, submitted to PR

    In-beam gamma-ray spectroscopy of 35Mg and 33Na

    Full text link
    Excited states in the very neutron-rich nuclei 35Mg and 33Na were populated in the fragmentation of a 38Si projectile beam on a Be target at 83 MeV/u beam energy. We report on the first observation of gamma-ray transitions in 35Mg, the odd-N neighbor of 34Mg and 36Mg, which are known to be part of the "Island of Inversion" around N = 20. The results are discussed in the framework of large- scale shell-model calculations. For the A = 3Z nucleus 33Na, a new gamma-ray transition was observed that is suggested to complete the gamma-ray cascade 7/2+ --> 5/2+ --> 3/2+ gs connecting three neutron 2p-2h intruder states that are predicted to form a close-to-ideal K = 3/2 rotational band in the strong-coupling limit.Comment: Accepted for publication Phys. Rev. C. March 16, 2011: Replaced figures 3 and 5. We thank Alfredo Poves for pointing out a problem with the two figure

    Distribution of the local density of states, reflection coefficient and Wigner delay time in absorbing ergodic systems at the point of chiral symmetry

    Full text link
    Employing the chiral Unitary Ensemble of random matrices we calculate the probability distribution of the local density of states for zero-dimensional ("quantum chaotic") two-sublattice systems at the point of chiral symmetry E=0 and in the presence of uniform absorption. The obtained result can be used to find the distributions of the reflection coefficent and of the Wigner time delay for such systems.Comment: 4 pages, 3 figure

    Population of bound excited states in intermediate-energy fragmentation reactions

    Get PDF
    Fragmentation reactions with intermediate-energy heavy-ion beams exhibit a wide range of reaction mechanisms, ranging from direct reactions to statistical processes. We examine this transition by measuring the relative population of excited states in several sd-shell nuclei produced by fragmentation with the number of removed nucleons ranging from two to sixteen. The two-nucleon removal is consistent with a non-dissipative process whereas the removal of more than five nucleons appears to be mainly statistical.Comment: 5 pages, 6 figure

    Population of neutron unbound states via two-proton knockout reactions

    Full text link
    The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.Comment: 6 pages, 3 figures, Proc. 9th Int. Spring Seminar on Nucl. Phys. Changing Facets of Nuclear Structure, May 20-34, 200
    • …
    corecore