74,616 research outputs found

    Control of laminar-instability waves using a new technique

    Get PDF
    A new technique using surface-film activators has been developed to induce and control laminar-instability waves by periodic heating. A flat plate was instrumented and installed in the GALCIT High-speed Water Tunnel with flush-mounted surface heaters and probes. Extremely two-dimensional naturally occurring Tolmien-Schlichting (TS) waves were observed along with the subsequent formation of turbulent spots. Laminar-instability waves were then excited in a controlled fashion using the surface-mounted heaters. A preliminary experiment on cancellation of excited laminar-instability waves was carried out. Finally, turbulent spots were produced using amplitude-modulated bursts to form Gaussian TS wave packets. Flow visualization, along with wall shear measurements, was used to infer the velocity and vorticity field near the wall

    New twisted intermetallic compound superconductor: A concept

    Get PDF
    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices

    The Microcanonical Functional Integral. I. The Gravitational Field

    Full text link
    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν\nu is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by {\it any} real stationary axisymmetric black hole, then in this same approximation lnν\ln\nu is shown to equal 1/4 the area of the black hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν\nu that lead to "imaginary time" functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function.Comment: 29 pages, plain Te

    Atmospheric environment for Space Shuttle (STS-3) launch

    Get PDF
    Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed

    Quasilocal Thermodynamics of Dilaton Gravity coupled to Gauge Fields

    Get PDF
    We consider an Einstein-Hilbert-Dilaton action for gravity coupled to various types of Abelian and non-Abelian gauge fields in a spatially finite system. These include Yang-Mills fields and Abelian gauge fields with three and four-form field strengths. We obtain various quasilocal quantities associated with these fields, including their energy and angular momentum, and develop methods for calculating conserved charges when a solution possesses sufficient symmetry. For stationary black holes, we find an expression for the entropy from the micro-canonical form of the action. We also find a form of the first law of black hole thermodynamics for black holes with the gauge fields of the type considered here.Comment: 41 pages, latex, uses fonts provided by AMSTe

    Effectiveness evaluation of STOL transport operations (phase 2)

    Get PDF
    A computer simulation program which models a commercial short-haul aircraft operating in the civil air system was developed. The purpose of the program is to evaluate the effect of a given aircraft avionics capability on the ability of the aircraft to perform on-time carrier operations. The program outputs consist primarily of those quantities which can be used to determine direct operating costs. These include: (1) schedule reliability or delays, (2) repairs/replacements, (3) fuel consumption, and (4) cancellations. More comprehensive models of the terminal area environment were added and a simulation of an existing airline operation was conducted to obtain a form of model verification. The capability of the program to provide comparative results (sensitivity analysis) was then demonstrated by modifying the aircraft avionics capability for additional computer simulations
    corecore