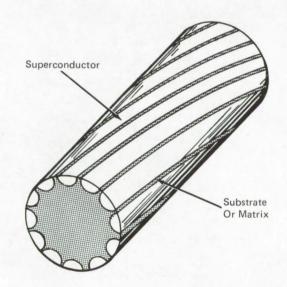
brought to you by DCORE



NASA Tech Briefs announce new technology derived from the U.S. space program. They are issued to encourage commercial application. Tech Briefs are available on a subscription basis from the National Technical Information Service, Springfield, Virginia 22151. Requests for individual copies or questions relating to the Tech Brief program may be directed to the Technology Utilization Office, NASA, Code KT, Washington, D.C. 20546.

NASA TECH BRIEF

Lewis Research Center


## New Twisted Intermetallic Compound Superconductor: A Concept

A method has been conceived for processing  $Nb_3Sn$ and other intermetallic compound superconductors to produce a twisted, stabilized wire or tube which can be used to wind electromagnets, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

There are presently no methods of producing these superconductors in a twisted (and/or superimposed) configuration for stabilized dc or ac operation of superconductive devices. When the current in a coil is changing (during turn-on, for example), the various fine filaments in a composite conductor will have additional currents induced in them by the changing magnetic flux. Twisting the filaments reduces these extra currents and consequently reduces the amount of heating that occurs when these currents collapse because of the temporary loss of superconductivity during "flux-jumps." The heating that accompanies "flux-jumps" can cause the loss of superconductivity in all or a significant part of a coil.

Methods of processing alloy superconducting composites with the filaments twisted (and/or superimposed) are in common practice. But these alloy superconductors, such as NbTi can produce neither the intense magnetic fields nor the high current density of the intermetallic compounds. It is not practical to use NbTi to produce fields higher than about 90 to 100 kilogauss (9 or 10 tesla). Superconducitvity is completely destroyed in NbTi by a field strength of 12 tesla, and NbTi has very little current carrying capability unless the field is below 10 tesla. The Nb<sub>3</sub>Sn, on the other hand, maintains useful current carrying ability to 15 or 16 tesla, and its superconductivity is not totally destroyed until about 22 tesla. The application of NbTi conductors is limited to moderate-strength fields produced with heavy conductors unsuitable for applications where small size and low weight are necessary.

In this conceptual method, a wire or tube of the desired substrate material (such as niobium, steel, or similar materials) is extruded, swaged, or drawn with multiple grooves along the length of the substrate. After the substrate is prepared, it can be twisted, as shown in the figure, to give the required number of twists/cm. Then a coating of the intermetallic, such as Nb<sub>3</sub>Sn, can be formed in the grooves by vapor deposition or a diffusion technique. Preparation of the substrate for the vapor deposition process may require masking the lands or sections between the grooves with a material resistant to the deposition process. This conductor is then suitable for winding into various coil configurations.



(continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.

The advantage of this process over the prior art is that the  $Nb_3Sn$  conductors can be twisted while tapes or ribbons of the prior methods cannot be. This technique decreases the magnitude of induced currents; thus, local disturbances are kept small, and "hot spots" do not propagate.

## Note:

No further documentation is available. Technical questions, however, may be directed to:

Technology Utilization Officer Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Reference: B72-10282

## Patent status:

Inquiries about obtaining rights for the commercial use of this invention may be made to:

Patent Counsel Mail Stop 500-311 Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135

> Source: W. D. Coles, G. V. Brown, and J. C. Laurence Lewis Research Center (LEW-11015)