1,240 research outputs found

    Expressing disambiguation filters as combinators

    Get PDF
    Contrarily to most conventional programming languages where certain symbols are used so as to create non-ambiguous grammars, most recent programming languages allow ambiguity. These ambiguities are solved using disambiguation rules, which dictate how the software that parses these languages should behave when faced with ambiguities. Such rules are highly efficient but come with some limitations - they cannot be further modified, their behaviour is hidden, and changing them implies re-building a parser. We propose a different approach for disambiguation. A set of disambiguation filters (expressed as combinators) are provided, and disambiguation can be achieved by composing combinators. New combinators can be created and, by having the disambiguation step separated from the parsing step, disambiguation rules can be changed without modifying the parser.- (undefined

    Variational data assimilation for the initial-value dynamo problem

    No full text
    The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries

    Optimized Discretization of Sources Imaged in Heavy-Ion Reactions

    Get PDF
    We develop the new method of optimized discretization for imaging the relative source from two particle correlation functions. In this method, the source resolution depends on the relative particle separation and is adjusted to available data and their errors. We test the method by restoring assumed pp sources and then apply the method to pp and IMF data. In reactions below 100 MeV/nucleon, significant portions of the sources extend to large distances (r > 20 fm). The results from the imaging show the inadequacy of common Gaussian source-parametrizations. We establish a simple relation between the height of the pp correlation function and the source value at short distances, and between the height and the proton freeze-out phase-space density.Comment: 36 pages (inc. 9 figures), RevTeX, uses epsf.sty. Submitted to Phys. Rev.

    PKS 1830-211: A Possible Compound Gravitational Lens

    Get PDF
    Measurements of the properties of gravitational lenses have the power to tell us what sort of universe we live in. The brightest known radio Einstein ring/gravitational lens PKS 1830-211 (Jauncey et al., 1991), whilst obscured by our Galaxy at optical wavelengths, has recently been shown to contain absorption at the millimetre waveband at a redshift of 0.89 (Wiklind and Combes, 1996a). We report the detection of a new absorption feature, most likely due to neutral hydrogen in a second redshift system at z = 0.19. Follow-up VLBI observations have spatially resolved the absorption and reveal it to cover the NE compact component and part of the lower surface brightness ring. This new information, together with existing evidence of the unusual VLBI radio structure and difficulties in modeling the lensing system, points to the existence of a second lensing galaxy along our line of sight and implies that PKS 1830-211 may be a compound gravitational lens.Comment: 8 pages, 2 figures, LaTeX (aasms4.sty). Accepted for publication in ApJ Letters. Preprint also available at http://kerr.phys.utas.edu.au/preprints

    Ceratoscopelus maderensis : pecular sound-scattering layer identified with this myctophid fish

    Get PDF
    Reprint. Science, vol. 160, no. 3831, 1968, pp. 991-993. Originally issued as Reference No. 68-58, series later renamed WHOI-.A sound- scattering layer, composed of discrete hyperbolic echo-sequences and apparently restricted to the Slope Water region of the western North Atlantic, has been identified from the Deep Submergence Research Vehicle ALVIN with schools of the myctophid fish Ceratoscopelus maderensis. By diving into the layer and using ALVIN's echo-ranging sonar, we approached and visually identified the sound scatterers. The number of echo sequences observed with the surface echo-sounder (1 /23. 76 x 105 cubic meters of water) checked roughly with the number of sonar targets observed from the submarine (1/7. 45 x 105 cubic meters) . The fish schools appeared to be 5 to 10 meters thick, 10 to 100 meters in diameter, and on centers 100 to 200 meters apart. Density within schools was estimated at 10 to 15 fish per cubic meter.Supported in part by contracts Nonr-3484(00) and Nonr-4029(00) and by NSF grant GB-4431

    New Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    Full text link
    We present new interstellar dust models which have been derived by simultaneously fitting the far-ultraviolet to near-infrared extinction, the diffuse infrared (IR) emission and, unlike previous models, the elemental abundance constraints on the dust for different interstellar medium abundances, including solar, F and G star, and B star abundances. The fitting problem is a typical ill-posed inversion problem, in which the grain size distribution is the unknown, which we solve by using the method of regularization. The dust model contains various components: PAHs, bare silicate, graphite, and amorphous carbon particles, as well as composite particles containing silicate, organic refractory material, water ice, and voids. The optical properties of these components were calculated using physical optical constants. As a special case, we reproduce the Li & Draine (2001) results, however their model requires an excessive amount of silicon, magnesium, and iron to be locked up in dust: about 50 ppm (atoms per million of H atoms), significantly more than the upper limit imposed by solar abundances of these elements, about 34, 35, and 28 ppm, respectively. A major conclusion of this paper is that there is no unique interstellar dust model that simultaneously fits the observed extinction, diffuse IR emission, and abundances constraints.Comment: 70 pages, 23 figures, accepted for publication in the Astrophysical Journal Supplemen

    Stellar Inversion Techniques

    Full text link
    Stellar seismic inversions have proved to be a powerful technique for probing the internal structure of stars, and paving the way for a better understanding of the underlying physics by revealing some of the shortcomings in current stellar models. In this lecture, we provide an introduction to this topic by explaining kernel-based inversion techniques. Specifically, we explain how various kernels are obtained from the pulsation equations, and describe inversion techniques such as the Regularised Least-Squares (RLS) and Optimally Localised Averages (OLA) methods.Comment: 20 pages, 8 figures. Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    The international synchronisation of business cycles: the role of animal spirits

    Get PDF
    Business cycles among industrial countries are highly correlated. We develop a two-country behavioral macroeconomic model where the synchronization of the business cycle is produced endogenously. The main channel of synchronization occurs through a propagation of “animal spirits”, i.e. waves of optimism and pessimism that become correlated internationally. We find that this propagation occurs with relatively low levels of trade integration. We do not need a correlation of exogenous shocks to generate synchronization. We also empirically test the main predictions of the model

    Fossil fuel prices and the economic and budgetary challenges of a small energy-importing economy : the case of Portugal

    Get PDF
    This paper examines the economic and budgetary impacts of fuel prices using a dynamic general equilibrium model of the Portuguese economy which high- lights the mechanisms of endogenous growth and includes a detailed modeling of the public sector. The fuel price scenarios are based on forecasts by the US Department of Energy (DOE-US) and the International Energy Agency (IEA-OECD) and represent a wide range of projections for absolute and relative fossil fuel prices. In terms of the long term economic impact, our results suggest a 1.9 % drop in GDP in the DOE-US scenario and 1.6 % in the IEA-OECD scenario. As to the budgetary impact, higher fuel prices lead to lower tax revenues, which, coupled with a reduction in public spending, translate into lower public deficits. Accordingly, increasing fuel prices create an important policy trade off in that they can contribute to reducing the public deficit while hindering economic growth. We find that fairly strong incentives for wind energy can reduce the economic impact of fuel prices by 14.2 % in the DOE-US price scenario and 18.5 % reduction in the IEA-OECD price scenario. Finally, our results highlight the importance of public sector spending decisions and the mechanisms of endogenous growth in understanding the impact of fossil fuel prices. Indeed, a scenario of higher fuel prices would, with exogenous public decisions and exogenous economic growth assumptions, result in substantially smaller economic effects and yield adverse budgetary effects.info:eu-repo/semantics/publishedVersio
    corecore