873 research outputs found

    Graphene Gold Nanoparticle Hybrid Based Near Infrared Photodetector

    Get PDF
    This paper presents novel and simplistic approach towards the development of graphene based near infrared (NIR) photodetectors. The developed device comprises of Au nanoparticles integrated within the channel of the back-gated graphene field effect transistors. The introduction of Au nanoparticles enhanced response of the device under IR illumination due improved NIR absorption. Further, dynamic response of the device under IR illumination is presented. This study will trigger the development of novel hybrid graphene device for graphene based photodetectors in IR regime

    The 1980 pressure response and flank failure of Mount St. Helens (USA) inferred from seismic scaling exponents

    Get PDF
    The cataclysmic 18 May 1980 eruption at Mount St. Helens was preceded by intense seismic activity marking the mechanical response of the volcanic edifice to interior pressurisation. This seismicity is analysed to yield the temporal change in the seismic scaling exponent, D, inferred from the seismic b-value, that in-turn is related to the seismic moment of an earthquake. Time evolution of D preceding the eruption onset reveals: (1) a major decrease in D occurring over only a few days at the end of March; (2) a steady but stepped decrease in D (steps ~5–10 days) occurring from the end of March to early May; (3) a sharp decrease in D in early May; and (4) steady low values of D occurring 2–3 days before the eruption onset. This response is interpreted as major ruptures, formed at the end of March, arresting and participating in, but not triggering the ultimate failure of the flank. Rather, the rate of interior fracturing slowed in the 2 months preceding the 18 May 1980 major blast, and the triggering of failure is consistent with interior gas overpressurisation. The occurrence of two swarms of low frequency seismic events and the high values of the harmonic tremor indicate the action of interior pressurisation on a cycle of 20–25 days. Solutions are applied to represent the harmonic interior pressurisation of the edifice by gas exsolving from the volcano core. The transient radial migration of overpressured gas may reduce the apparent strength of the edifice, and ultimately trigger failure of the flank. Importantly, this mechanism is capable of triggering flank failure both after multiple core pressurisation cycles have been sustained, and as core pressures are low and diminishing—and may be a minimum. These twin attributes are both apparent in the seismic record for Mount St. Helens, used as a proxy for the unrecorded timing and magnitude of gas pressurisation at the volcano core.Published155-168partially_ope

    Influence of perineural invasion in predicting overall survival and disease-free survival in patients With locally advanced gastric cancer

    Get PDF
    Background The aim of the present study was to evaluate the prognostic significance of perineural invasion (PNI) in locally advanced gastric cancer patients who underwent D2 gastrectomy and adjuvant chemotherapy. Methods The records of a series of 103 patients undergoing D2 gastrectomy with curative intent combined with adjuvant chemotherapy from January 2004 to December 2014 were retrospectively reviewed. Results PNI was positive in 47 (45.6%) specimens. The 1-, 3-, and 5-year overall survival rates were 81%, 55%, and 42%, respectively. The 1-, 3-, and 5-year disease-free survival (DFS) rates were 76%, 57%, and 49%, respectively. A multivariate analysis showed that age number of positive lymph nodes, T stage, and PNI were independently associated with overall survival. Regarding DFS, the multivariate analysis showed that only PNI was independently associated with DFS. Conclusions PNI and T stage and positive lymph nodes are independent markers of poor prognosis in patients with gastric cancer. PNI should be incorporated in the postoperative staging system for planning follow-up after surgery and in our opinion to propose more aggressive postoperative therapies in PNI-positive patients

    Analysis of Self-Organized Criticality in the Olami-Feder-Christensen model and in real earthquakes

    Full text link
    We perform a new analysis on the dissipative Olami-Feder-Christensen model on a small world topology considering avalanche size differences. We show that when criticality appears the Probability Density Functions (PDFs) for the avalanche size differences at different times have fat tails with a q-Gaussian shape. This behaviour does not depend on the time interval adopted and is found also when considering energy differences between real earthquakes. Such a result can be analytically understood if the sizes (released energies) of the avalanches (earthquakes) have no correlations. Our findings support the hypothesis that a self-organized criticality mechanism with long-range interactions is at the origin of seismic events and indicate that it is not possible to predict the magnitude of the next earthquake knowing those of the previous ones.Comment: 5 pages, 3 figures. New version accepted for publication on PRE Rapid Communication

    Multiscale seismic characterization and monitoring of a potentially unstable rock mass: the Madonna del Sasso (NW Italy) rockfall

    Get PDF
    Active (e.g. surface refraction and cross-hole tomography) and passive (monitoring of microseismic events) seismic methods can provide a proper characterization of the inner structure of the rock mass and are key to the comprehension of the mechanisms enhancing the instability of rock masses.We propose a multiscale approach for the characterization of the potentially unstable granitic cliff of Madonna del Sasso (NW Italian Alps) integrating prospecting surveys, laboratory tests, long-term microseismic monitoring and numerical modeling. The complex 3-D fracture setting, the geometry of the unstable sector was achieved through field observations, photogrammetric geomechanical analysis and interpretation of on-site seismic surveys, which revealed to be fundamental for constraining the fracture geometry and opening at depth within the rock mass. Physical and mechanical properties of the investigated medium were obtained through laboratory tests on granite samples. Continuous monitoring of ambient vibration at the site (October 2013 - present) did not highlight irreversible changes in the rock mass properties precursory to an acceleration to failure. However, a strong thermal control was found to govern the stability of the cliff, with reversible seasonal opening and closing of fractures resulting from thermal contraction and expansion. Moreover, the vibration modes of the unstable sector were found to be strongly controlled by the complex 3-D geometry of the main fracture planes affecting the site. Detection and location of microseismic events within the prone-to-fall rock mass highlighted the concentration of low energy releases close to the major fracture planes. Microseismic monitoring at the laboratory scale of deformation and rupture processes is expected to further highlight the relationships between energy release, seismic signatures and seismic sources. Finally, finite element modeling on the 3-D geometry allowed an experimental validation and interpretation

    Immunopositivity for Histone MacroH2A1 Isoforms Marks Steatosis-Associated Hepatocellular Carcinoma.

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously

    Power-Law Time Distribution of Large Earthquakes

    Full text link
    We study the statistical properties of time distribution of seimicity in California by means of a new method of analysis, the Diffusion Entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent μ=2.06±0.01\mu=2.06 \pm 0.01. We propose the Long-Range model, reproducing the main properties of the diffusion entropy and describing the seismic triggering mechanisms induced by large earthquakes.Comment: 4 pages, 3 figures. Revised version accepted for publication. Typos corrected, more detailed discussion on the method used, refs added. Phys. Rev. Lett. (2003) in pres
    • …
    corecore