40 research outputs found
Development of Near Infrared Spectroscopy Models for Quantitative Prediction of the Content of Bioactive Compounds in Olive Leaves
The objective of this work was to evaluate the ability of artificial neural networks (ANN) in near infrared (NIR) spectra calibration models to predict the total polyphenolic content, antioxidant activity, and extraction yield of the olive leaves aqueous extracts prepared with three extraction procedures (conventional extraction, microwave-assisted extraction, and microwave-ultrasound-assisted extraction). Partial least squares (PLS) models were developed from principal component analyses (PCA) scores of NIR spectra of olive leaf aqueous extracts in terms of total polyphenols concentration, antioxidant activity, and extraction yield for each extraction procedure. PLS models were used to view which PCA scores are the best suited as input for ANN based on three output variables. ANN showed very good correlation of NIRs and all tested variables, especially in the case of total polyphenolic content (TPC). Therefore, ANN can be used for the prediction of total polyphenol concentrations, antioxidant activity, and extraction yield of plant extracts based on the NIR spectra
Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance
Background: In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings: Here we show that growth reduction was significant and pervasive in a 6.79?million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10 % in the worst hit regions, and was closely related to maximum gust wind speed (R 2 = 0.849) and structural wind damage (R 2 = 0.782). At the landscape scale, windrelated growth reduction amounted to 3.0 million m 3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden
Direct quantification of carotenoids in low fat babyfoods via laser photoacoustics and colorimetric index a
Carotenoids are important antioxidants found in various foods including those for nutrition of infants. In this investigation, the total carotenoid content (TCC) of nine different commercially available baby foods was quantified using colorimetric index a * obtained via reflectance colorimetry (RC) and by laser photoacoustic spectroscopy (LPAS) at 473 nm. The latter requires a minimum of sample preparation and only a one time calibration step which enables practically direct quantification of TCC. Results were verified versus UV–Vis spectrophotometry (SP) as the reference technique. It was shown that RC and LPAS (at 473 nm) provide satisfactory results for a *, R 2 = 0.9925 and R 2 = 0.9972, respectively. Other color indices do not show a correlation with TCC. When determining the TCC in baby foods containing tomatoes, it is necessary to select a different analytical wavelength to compensate for the effect of lycopene’s presence in the test samples
Non-destructive Measurement of Total Carotenoid Content in Processed Tomato Products : Infrared Lock-In Thermography, Near-Infrared Spectroscopy/Chemometrics, and Condensed Phase Laser-Based Photoacoustics—Pilot Study
Carotenes found in a diversity of fruits and vegetables are among important natural antioxidants. In a study described in this paper, the total carotenoid content (TCC) in seven different products derived from thermally processed tomatoes was determined using laser photoacoustic spectroscopy (LPAS), infrared lock-in thermography (IRLIT), and near-infrared spectroscopy (NIRS) combined with chemometrics. Results were verified versus data obtained by traditional VIS spectrophotometry (SP) that served as a reference technique. Unlike SP, the IRLIT, NIRS, and LPAS require a minimum of sample preparation which enables practically direct quantification of the TCC