301 research outputs found

    Design and Assembly of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management in Dipole Mirror Configuration

    Full text link
    The stress-management cos-theta (SMCT) coil is a new concept which has been proposed and is being developed at Fermilab in the framework of US Magnet Development Program (US-MDP) for high-field and/or large-aperture accelerator magnets based on low-temperature and high-temperature superconductors. The SMCT structure is used to reduce large coil deformations under the Lorentz forces and, thus, the excessively large strains and stresses in the coil. A large-aperture Nb3Sn SMCT dipole coil has been developed and fabricated at Fermilab to demonstrate and test the SMCT concept including coil design, fabrication technology and performance. The first SMCT coil has been assembled with 60-mm aperture Nb3Sn coil inside a dipole mirror configuration and will be tested separately and in series with the insert coil. This paper summarizes the large-aperture SMCT coil design and parameters and reports the coil fabrication steps and its assembly in dipole mirror configuration

    Development and Test of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management

    Full text link
    The design concept of the Electron Ion Collider (EIC), which is under construction at BNL, considers adding a 2nd Interaction Region (IR) and detector to the machine after completion of the present EIC project. Recent progress with development and fabrication of large-aperture high-field magnets based on the Nb3Sn technology for the HL-LHC makes this technology interesting for the 2nd EIC IR. This paper summarizes the results of feasibility studies of large-aperture high-field Nb3Sn dipoles and quadrupoles for the 2nd EIC IR.Comment: IPAC 2023. arXiv admin note: text overlap with arXiv:2304.1315

    Priming potato plants with melatonin protects stolon formation under delayed salt stress by maintaining the photochemical function of photosystem II, ionic homeostasis and activating the antioxidant system

    Get PDF
    Melatonin is among one of the promising agents able to protect agricultural plants from the adverse action of different stressors, including salinity. We aimed to investigate the effects of melatonin priming (0.1, 1.0 and 10 Β΅M) on salt-stressed potato plants (125 mM NaCl), by studying the growth parameters, photochemical activity of photosystem II, water status, ion content and antioxidant system activity. Melatonin as a pleiotropic signaling molecule was found to decrease the negative effect of salt stress on stolon formation, tissue water content and ion status without a significant effect on the expression of Na+/H+ -antiporter genes localized on the vacuolar (NHX1 to NHX3) and plasma membrane (SOS1). Melatonin effectively decreases the accumulation of lipid peroxidation products in potato leaves in the whole range of concentrations studied. A melatonin-induced dose-dependent increase in Fv/Fm together with a decrease in uncontrolled non-photochemical dissipation Y(NO) also indicates decreased oxidative damage. The observed protective ability of melatonin was unlikely due to its influence on antioxidant enzymes, since neither SOD nor peroxidase were activated by melatonin. Melatonin exerted positive effects on the accumulation of water-soluble low-molecularweight antioxidants, proline and flavonoids, which could aid in decreasing oxidative stress. The most consistent positive effect was observed on the accumulation of carotenoids, which are well-known lipophilic antioxidants playing an important role in the protection of photosynthesis from oxidative damage. Finally, it is possible that melatonin accumulated during pretreatment could exert direct antioxidative effects due to the ROS scavenging activity of melatonin molecules

    Π’Π›Π˜Π―ΠΠ˜Π• Π”Π˜ΠΠΠœΠ˜Π§Π•Π‘ΠšΠžΠ“Πž ΠŸΠžΠ”ΠœΠΠ“ΠΠ˜Π§Π˜Π’ΠΠΠ˜Π― НА Π­Π€Π€Π•ΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ Π­Π›Π•ΠšΠ’Π ΠžΠœΠΠ“ΠΠ˜Π’ΠΠž-ΠΠšΠ£Π‘Π’Π˜Π§Π•Π‘ΠšΠžΠ“Πž ΠŸΠ Π•ΠžΠ‘Π ΠΠ—ΠžΠ’ΠΠΠ˜Π― ПРИ Π’ΠžΠ›ΠΠžΠ’ΠžΠ”ΠΠžΠœ ΠšΠžΠΠ’Π ΠžΠ›Π• ΠŸΠ Π£Π’ΠšΠžΠ’

    Get PDF
    The disadvantage of the electromagnetic-acoustic (EMA) method receiving ultrasonic waves are low efficiency. The traditional way to enhance its effectiveness is increase the bias field. The aim of the study was research the way to improve the efficiency of the EMA transformation, using a time-varying bias field.The researches held with the help of a specially designed installation that allows the magnetization to be performed by a constant and alternating magnetic field (dynamic bias), synchronously with the passage of the received pulse. The object of the study were rods made of different grades of steel with a diameter of 4–6 mm, in which the symmetrical zero mode S0 of the rod wave was excited by the EMA method (in the frequency range of about 40 kHz). A comparative analysis of the amplitudes and form pulses of multiple reflections during static and dynamic reversal of magnetization and with a full cycle of magnetization reversal conducted.The result of the efficiency measurements EMA reception during static and dynamic bias found a significant (up to 5 times) increase in the signal amplitude on the receiving transducer. Taking into account that the main contribution to the excitation mechanism and the reception mechanism made the magnetostrictive effect on low frecuncy, it can assumed that using a dynamic bias field is impacting significant on the effective mobility of magnetic domains (that is changes the dynamic magnetic susceptibility of the material). It is established that it is possible to monitor steel at lower values of the bias field, and, consequently, to reduce the mass dimensions of the magnetic system.Thus, in the course of the researchers found of effect of dynamic bias and effect of dynamic bias increase acoustic pulse amplitude of the signal of the received EMA method. Using this method will improve the quality EMA testing by creating more efficient EMA transducer. Taking into account that the value of the detected effect depends significantly on the steel grade, we can assume its possible application in the methods of express analysis, estimation of structural and stressed states. НСдостатком элСктромагнитно-акустичСского (ЭМА) ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΡ€ΠΈΠ΅ΠΌΠ° ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ являСтся Π΅Π³ΠΎ низкая ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ. Π’Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ способы Π΅Π΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ – ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ΠΌΠ°Π³Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ поля. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось исслСдованиС способа ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности ЭМА прСобразования с использованиСм ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅Π³ΠΎΡΡ Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ поля подмагничивания. ИсслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ установки, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅ΠΉ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ ΠΏΠΎΠ΄ΠΌΠ°Π³Π½ΠΈΡ‡ΠΈΠ²Π°Π½ΠΈΠ΅ постоянным ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ ΠΏΠΎΠ»Π΅ΠΌ (динамичСскоС ΠΏΠΎΠ΄ΠΌΠ°Π³Π½ΠΈΡ‡ΠΈΠ²Π°Π½ΠΈΠ΅) синхронно с ΠΏΡ€ΠΎΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ принятого ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°. ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования являлись ΠΏΡ€ΡƒΡ‚ΠΊΠΈ ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ°Ρ€ΠΎΠΊ стали Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 4–6 ΠΌΠΌ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ЭМА ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°Π»Π°ΡΡŒ симмСтричная нулСвая ΠΌΠΎΠ΄Π° S0 стСрТнСвой Π²ΠΎΠ»Π½Ρ‹ (Π² частотном Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΠΊΠΎΠ»ΠΎ 40 ΠΊΠ“Ρ†). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄ ΠΈ Ρ„ΠΎΡ€ΠΌ сСрии ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ статичСском ΠΈ динамичСском ΠΏΠ΅Ρ€Π΅ΠΌΠ°Π³Π½ΠΈΡ‡ΠΈΠ²Π°Π½ΠΈΠΈ ΠΈ с ΠΏΠΎΠ»Π½Ρ‹ΠΌ Ρ†ΠΈΠΊΠ»ΠΎΠΌ пСрСмагничивания.Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ эффСктивности ЭМА ΠΏΡ€ΠΈΠ΅ΠΌΠ° ΠΏΡ€ΠΈ статичСском ΠΈ динамичСском ΠΏΠΎΠ΄ΠΌΠ°Π³Π½ΠΈΡ‡ΠΈΠ²Π°Π½ΠΈΠΈ установлСно сущСствСнноС (Π΄ΠΎ 5 Ρ€Π°Π·) ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ сигнала Π½Π° ΠΏΡ€ΠΈΠ΅ΠΌΠ½ΠΎΠΌ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅. Π’ связи с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π½Π° Π½ΠΈΠ·ΠΊΠΈΡ… частотах основной Π²ΠΊΠ»Π°Π΄ Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΊΠ°ΠΊ возбуТдСния, Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈΠ΅ΠΌΠ° вносит магнитострикционный эффСкт, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ использованиС динамичСского поля подмагничивания сущСствСнным ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ влияСт Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… Π΄ΠΎΠΌΠ΅Π½ΠΎΠ² (Ρ‚.Π΅. измСняСт Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΡƒΡŽ Π²ΠΎΡΠΏΡ€ΠΈΠΈΠΌΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°). УстановлСна Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΏΡ€ΠΈ ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… значСниях ΠΏΠΎΠ΄ΠΌΠ°Π³Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ поля, Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ массогабаритныС Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ систСмы.Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² Ρ…ΠΎΠ΄Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований установлСно Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ эффСкта динамичСского подмагничивания (ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ сигнала принятого ЭМА ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ акустичСского ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°). ИспользованиС Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ качСство ЭМА контроля Π·Π° счСт создания Π±ΠΎΠ»Π΅Π΅ эффСктивных ЭМА ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ. ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ эффСкта сущСствСнно зависит ΠΎΡ‚ ΠΌΠ°Ρ€ΠΊΠΈ стали, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π΅Π³ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… экспрСсс-Π°Π½Π°Π»ΠΈΠ·Π°, ΠΎΡ†Π΅Π½ΠΊΠΈ структурного ΠΈ напряТСнного состояний

    ΠžΡ†Π΅Π½ΠΊΠ° нСравномСрности ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… свойств листов ΠΈΠ· закрытоячСистых ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ² акустичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ

    Get PDF
    The widespread use of polyolefin foams in strategically important industries is due to their high thermal, sound and vibration insulation properties. The aim of the work was to evaluate the non-uniformity of elastic properties over the area of sheets of polyolefin foams of various types using the acoustic non-contact shadow amplitude method of testing and confirmation by the structural analysis method.The article presents the developed installation and a new method of non-contact acoustic testing of sheets made of closed-cell polyolefin foams based on recording the amplitude of the pulse that passed through the sheet and allowing to assess to the unevenness of its elastic properties during scanning. Studies of uneven elastic properties were carried out on sheets of closed-cell polyolefin foams of the ISOLON 500 and ISOLON 300 brands which differ in material and manufacturing technology (technique of cross-linking, method and multiplicity of foaming).It is shown that the absolute amplitude of the signal and its spread relative to the average value is affected by the structure of the foam polyolefin material and its heterogeneity over the area of the studied sheet determined by the production technology which is confirmed visually using microscopy.Studies have shown the effect on the indications unevenness of the method of obtaining and the apparent density of the material. It is shown that the most uneven elastic properties and structure belong to sheets of polyolefin foam obtained by chemical cross-linking technology (the unevenness of Ξ” was 6.5 %). Among the physically cross-linked sheets of polyolefin foam the most uniform in structure and elastic properties are samples made of ethylene vinyl acetate with Ξ” = 3.8 %, as well as sheets with a high foaming rate (Ξ” = 3.9 %). The unevenness of structure of the studied sheets of polyolefin foams was confirmed by optical microscopy of sections in two mutually perpendicular directions.Π¨ΠΈΡ€ΠΎΠΊΠΎΠ΅ использованиС ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ² Π² стратСгичСски Π²Π°ΠΆΠ½Ρ‹Ρ… отраслях ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ обусловлСно ΠΈΡ… высокими Ρ‚Π΅ΠΏΠ»ΠΎ-, Π·Π²ΡƒΠΊΠΎ- ΠΈ виброизоляционными свойствами. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась ΠΎΡ†Π΅Π½ΠΊΠ° нСравномСрности ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… свойств ΠΏΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ листов ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² с использованиСм акустичСского бСсконтактного Ρ‚Π΅Π½Π΅Π²ΠΎΠ³ΠΎ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° контроля ΠΈ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ структурного Π°Π½Π°Π»ΠΈΠ·Π°.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ установка ΠΈ новая ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° бСсконтактного акустичСского контроля листов ΠΈΠ· закрытоячСистых ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ², основанная Π½Π° рСгистрации Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ°, ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠ΅Π³ΠΎ сквозь лист, ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… свойств Π² процСссС сканирования. ИсслСдования нСравномСрности ΡƒΠΏΡ€ΡƒΠ³ΠΈΡ… свойств ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ Π½Π° листах ΠΈΠ· закрытоячСистых ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ² ΠΌΠ°Ρ€ΠΊΠΈ ISOLON 500 ΠΈ ISOLON 300, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ изготовлСния (способ сшивки, ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈ ΠΊΡ€Π°Ρ‚Π½ΠΎΡΡ‚ΡŒ вспСнивания).Показано, Ρ‡Ρ‚ΠΎ Π½Π° Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΡƒΡŽ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρƒ сигнала ΠΈ Π΅Ρ‘ разброс ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ срСднСго значСния влияСт структура ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½Π° ΠΈ Π΅Ρ‘ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ исслСдуСмого листа, опрСдСляСмая Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ производства, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΎ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ с использованиСм микроскопии. ИсслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ влияниС Π½Π° Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ способа получСния ΠΈ каТущСйся плотности ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Показано, Ρ‡Ρ‚ΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹Π΅ ΡƒΠΏΡ€ΡƒΠ³ΠΈΠ΅ свойства ΠΈ структуру ΠΈΠΌΠ΅ΡŽΡ‚ листы ΠΈΠ· ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ химичСской сшивки (Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ Ξ” составила 6,5 %). Из физичСски ΡΡˆΠΈΡ‚Ρ‹Ρ… листов ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΏΠΎ структурС ΠΈ ΡƒΠΏΡ€ΡƒΠ³ΠΈΠΌ свойствам ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· этилСнвинилацСтата с Ξ” = 3,8 %, Π° Ρ‚Π°ΠΊΠΆΠ΅ листы с высокой ΠΊΡ€Π°Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ вспСнивания (Ξ” = 3,9 %). ΠΠ΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ структуры исслСдованных листов ΠΏΠ΅Π½ΠΎΠΏΠΎΠ»ΠΈΠΎΠ»Π΅Ρ„ΠΈΠ½ΠΎΠ² ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½Π° оптичСской микроскопиСй срСзов Π² Π΄Π²ΡƒΡ… Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных направлСниях
    • …
    corecore