14,489 research outputs found
Nonlinearity of vacuum reggeons and exclusive diffractive production of vector mesons at HERA
The processes of exclusive photo- and electroproduction of vector mesons
(770), (1020) and (3096) at collision energies and transferred momenta squared are considered in
the framework of a phenomenological Regge-eikonal scheme with nonlinear Regge
trajectories in which their QCD asymptotic behavior is taken into account
explicitly. By comparison of available experimental data from ZEUS and H1
Collaborations with the model predictions it is demonstrated that corresponding
angular distributions and integrated cross-sections in the above-mentioned
kinematical range can be quantitatively described with use of two -even
vacuum Regge trajectories. These are the "soft" pomeron dominating the high
energy reactions without a hard scale and the "hard" pomeron giving an
essential contribution to photo- and electroproduction of heavy vector mesons
and deeply virtual electroproduction of light vector mesons.Comment: 25 pages, 12 figure
Scattering properties of weakly bound dimers of fermionic atoms
We consider weakly bound diatomic molecules (dimers) formed in a
two-component atomic Fermi gas with a large positive scattering length for the
interspecies interaction. We develop a theoretical approach for calculating
atom-dimer and dimer-dimer elastic scattering and for analyzing the inelastic
collisional relaxation of the molecules into deep bound states. This approach
is based on the single-channel zero range approximation, and we find that it is
applicable in the vicinity of a wide two-body Feshbach resonance. Our results
draw prospects for various interesting manipulations of weakly bound dimers of
fermionic atoms.Comment: extended version of cond-mat/030901
Vortex evolution in parametric wave mixing
We investigate the evolution of vortex wave front dislocations in multiple-wave second-harmonic generation processes in quadratic nonlinear media. Vortices nested in finite-size host beams are shown to nucleate and to annihilate in pairs, and to move across the transverse wave front during the beam evolution. A closed-form model that holds under conditions of negligible-depletion of the pump beam is developed to describe the vortex dynamics in order to predict the number of vortices present in the wave fronts of the beams at any instance of the propagation. Results are compared with numerical simulations of the full governing equations and with experimental observations. Limitations of the model are outlined.Peer ReviewedPostprint (published version
- …