199 research outputs found

    Optical Color Gradients in Star-Forming Ring Galaxies

    Full text link
    We compute radial color gradients produced by an outwardly propagating circular wave of star formation and compare our results with color gradients observed in the classical ring galaxy, the ``Cartwheel''. We invoke two independent models of star formation in the ring galaxies. The first one is the conventional density wave scenario, in which an intruder galaxy creates a radially propagating density wave accompanied by an enhanced star formation following the Schmidt law. The second scenario is a pure self-propagating star formation model, in which the intruder only sets off the first burst of stars at the point of impact. Both models give essentially the same results. Systematic reddening of B-V, V-K colors towards the center, such as that observed in the Cartwheel, can be obtained only if the abundance of heavy elements in the star-forming gas is a few times below solar. The B-V and V-K color gradients observed in the Cartwheel can be explained as a result of mixing of stellar populations born in a star-forming wave propagating through a low-metallicity gaseous disk, and a pre-existing stellar disk of the size of the gaseous disk with color properties typical to those observed in nearby disk galaxies.Comment: 16 pages, 12 figures; accepted for publication in the Astrophysical Journa

    Origin of TeV Galactic Cosmic Rays

    Full text link
    We consider a possibility of identification of sources of cosmic rays (CR) of the energy above 1 TeV via observation of degree-scale extended gamma-ray emission which traces the locations of recent sources in the Galaxy. Such emission in the energy band above 100 GeV is produced by CR nuclei and electrons released by the sources and spreading into the interstellar medium. We use the data from the Fermi gamma-ray telescope to locate the degree-scale 100 GeV gamma-ray sources. We find that the number of such sources and their overall power match to those expected when CRs injection events happen every ~100 yr in portions of ~1e50 erg. We find that most of the sources are associated to pulsars with spin down age less than ~30 kyr and hence to the recent supernova explosions. This supports the hypothesis of supernova origin of Galactic CRs. We notice that the degree-scale extended emission does not surround shell-like supernova remnants without pulsars. Based on this observation, we argue that the presence of the pulsar is essential for the CR acceleration process. We expect that a significant fraction of the degree-scale sources should be detectable as extended sources with km3-scale neutrino detectors.Comment: 14 pages, 14 figures, accepted for publication in Phys.Rev.

    Global Spiral Modes in NGC 1566: Observations and Theory

    Get PDF
    We present an observational and theoretical study of the spiral structure in galaxy NGC 1566. A digitized image of NGC 1566 in I-band was used for measurements of the radial dependence of amplitude variations in the spiral arms. We use the known velocity dispersion in the disk of NGC 1566, together with its rotation curve, to construct linear and 2D nonlinear simulations which are then compared with observations. A two-armed spiral is the most unstable linear global mode in the disk of NGC 1566. The nonlinear simulations are in agreement with the results of the linear modal analysis, and the theoretical surface amplitude and the velocity residual variations across the spiral arms are in qualitative agreement with the observations. The spiral arms found in the linear and nonlinear simulations are considerably shorter than those observed in the disk of NGC 1566. We argue therefore, that the surface density distribution in the disk of the galaxy NGC 1566 was different in the past, when spiral structure in NGC 1566 was linearly growing.Comment: 41 pages, 20 figures, to be published in the Astrophysical Journa
    corecore