411 research outputs found

    A Novel TCR Transgenic Model Reveals That Negative Selection Involves an Immediate, Bim-Dependent Pathway and a Delayed, Bim-Independent Pathway

    Get PDF
    A complete understanding of negative selection has been elusive due to the rapid apoptosis and clearance of thymocytes in vivo. We report a TCR transgenic model in which expression of the TCR during differentiation occurs only after V(D)J-like recombination. TCR expression from this transgene closely mimics expression of the endogenous TCRΞ± locus allowing for development that is similar to wild type thymocytes. This model allowed us to characterize the phenotypic changes that occurred after TCR-mediated signaling in self-reactive thymocytes prior to their deletion in a highly physiological setting. Self-reactive thymocytes were identified as being immature, activated and CD4loCD8lo. These cells had upregulated markers of negative selection and were apoptotic. Elimination of Bim reduced the apoptosis of self-reactive thymocytes, but it did not rescue their differentiation and the cells remained at the immature CD4loCD8lo stage of development. These cells upregulate Nur77 and do not contribute to the peripheral T cell repertoire in vivo. Remarkably, development past the CD4loCD8lo stage was possible once the cells were removed from the negatively selecting thymic environment. In vitro development of these cells occurred despite their maintenance of high intracellular levels of Nur77. Therefore, in vivo, negatively selected Bim-deficient thymocytes are eliminated after prolonged developmental arrest via a Bim-independent pathway that is dependent on the thymic microenvironment. These data newly reveal a layering of immediate, Bim-dependent, and delayed Bim-independent pathways that both contribute to elimination of self-reactive thymocytes in vivo

    Distinct Types of Fibrocyte Can Differentiate from Mononuclear Cells in the Presence and Absence of Serum

    Get PDF
    Background: Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin–like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species. Methodology/Principal Findings: We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. Conclusions: The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants

    Improvement of Long COVID symptoms over one year.

    Get PDF
    IMPORTANCE: Early and accurate diagnosis and treatment of Long COVID, clinically known as post-acute sequelae of COVID-19 (PASC), may mitigate progression to chronic diseases such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Our objective was to determine the utility of the DePaul Symptom Questionnaire (DSQ) to assess the frequency and severity of common symptoms of ME/CFS, to diagnose and monitor symptoms in patients with PASC. METHODS: This prospective, observational cohort study enrolled 185 people that included 34 patients with PASC that had positive COVID-19 test and persistent symptoms of \u3e3 months and 151 patients diagnosed with ME/CFS. PASC patients were followed over 1 year and responded to the DSQ at baseline and 12 months. ME/CFS patients responded to the DSQ at baseline and 1 year later. Changes in symptoms over time were analyzed using a fixed-effects model to compute difference-in-differences estimates between baseline and 1-year follow-up assessments. PARTICIPANTS: Patients were defined as having PASC if they had a previous positive COVID-19 test, were experiencing symptoms of fatigue, post-exertional malaise, or other unwellness for at least 3 months, were not hospitalized for COVID-19, had no documented major medical or psychiatric diseases prior to COVID-19, and had no other active and untreated disease processes that could explain their symptoms. PASC patients were recruited in 2021. ME/CFS patients were recruited in 2017. RESULTS: At baseline, patients with PASC had similar symptom severity and frequency as patients with ME/CFS and satisfied ME/CFS diagnostic criteria. ME/CFS patients experienced significantly more severe unrefreshing sleep and flu-like symptoms. Five symptoms improved significantly over the course of 1 year for PASC patients including fatigue, post-exertional malaise, brain fog, irritable bowel symptoms and feeling unsteady. In contrast, there were no significant symptom improvements for ME/CFS patients. CONCLUSION AND RELEVANCE: There were considerable similarities between patients with PASC and ME/CFS at baseline. However, symptoms improved for PASC patients over the course of a year but not for ME/CFS patients. PASC patients with significant symptom improvement no longer met ME/CFS clinical diagnostic criteria. These findings indicate that the DSQ can be used to reliably assess and monitor PASC symptoms

    Hemodynamics during the 10-minute NASA Lean Test: evidence of circulatory decompensation in a subset of ME/CFS patients.

    Get PDF
    BACKGROUND: Lightheadedness, fatigue, weakness, heart palpitations, cognitive dysfunction, muscle pain, and exercise intolerance are some of the symptoms of orthostatic intolerance (OI). There is substantial comorbidity of OI in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome). The 10-minute NASA Lean Test (NLT) is a simple, point-of-care method that can aid ME/CFS diagnosis and guide management and treatment of OI. The objective of this study was to understand the hemodynamic changes that occur in ME/CFS patients during the 10-minute NLT. METHODS: A total of 150 ME/CFS patients and 75 age, gender and race matched healthy controls (HCs) were enrolled. We recruited 75 ME/CFS patients who had been sick for less than 4 years (\u3c 4 ME/CFS) and 75 ME/CFS patients sick for more than 10 years (\u3e 10 ME/CFS). The 10-minute NLT involves measurement of blood pressure and heart rate while resting supine and every minute for 10 min while standing with shoulder-blades on the wall for a relaxed stance. Spontaneously reported symptoms are recorded during the test. ANOVA and regression analysis were used to test for differences and relationships in hemodynamics, symptoms and upright activity between groups. RESULTS: At least 5 min of the 10-minute NLT were required to detect hemodynamic changes. The \u3c 4 ME/CFS group had significantly higher heart rate and abnormally narrowed pulse pressure compared to \u3e 10 ME/CFS and HCs. The \u3c 4 ME/CFS group experienced significantly more OI symptoms compared to \u3e 10 ME/CFS and HCs. The circulatory decompensation observed in the \u3c 4 ME/CFS group was not related to age or medication use. CONCLUSIONS: Circulatory decompensation characterized by increased heart rate and abnormally narrow pulse pressure was identified in a subgroup of ME/CFS patients who have been sick for \u3c 4 years. This suggests inadequate ventricular filling from low venous pressure. The 10-minute NLT can be used to diagnose and treat the circulatory decompensation in this newly recognized subgroup of ME/CFS patients. The \u3e 10 ME/CFS group had less pronounced hemodynamic changes during the NLT possibly from adaptation and compensation that occurs over time. The 10-minute NLT is a simple and clinically useful point-of-care method that can be used for early diagnosis of ME/CFS and help guide OI treatment

    Cooperative Interactions between TLR4 and TLR9 Regulate Interleukin 23 and 17 Production in a Murine Model of Gram Negative Bacterial Pneumonia

    Get PDF
    Toll like receptors play an important role in lung host defense against bacterial pathogens. In this study, we investigated independent and cooperative functions of TLR4 and TLR9 in microbial clearance and systemic dissemination during Gram-negative bacterial pneumonia. To access these responses, wildtype Balb/c mice, mice with defective TLR4 signaling (TLR4lps-d), mice deficient in TLR9 (TLR9βˆ’/βˆ’) and TLR4/9 double mutant mice (TLR4lps-d/TLR9βˆ’/βˆ’) were challenged with K. pneumoniae, then time-dependent lung bacterial clearance and systemic dissemination determined. We found impaired lung bacterial clearance in TLR4 and TLR9 single mutant mice, whereas the greatest impairment in clearance was observed in TLR4lps-d/TLR9βˆ’/βˆ’ double mutant mice. Early lung expression of TNF-Ξ±, IL-12, and chemokines was TLR4 dependent, while IFN-Ξ³ production and the later expression of TNF-Ξ± and IL-12 was dependent on TLR9. Classical activation of lung macrophages and maximal induction of IL-23 and IL-17 required both TLR4 and TLR9. Finally, the i.t. instillation of IL-17 partially restored anti-bacterial immunity in TLR4lps-d/TLR9βˆ’/βˆ’ double mutant mice. In conclusion, our studies indicate that TLR4 and TLR9 have both non-redundant and cooperative roles in lung innate responses during Gram-negative bacterial pneumonia and are both critical for IL-17 driven antibacterial host response

    A genome-wide CRISPR activation screen identifies

    Get PDF
    The genome is pervasively transcribed to produce a vast array of non-coding RNAs (ncRNAs). Long non-coding RNAs (lncRNAs) are transcripts of \u3e200 nucleotides and are best known for their ability to regulate gene expression. Enhancer RNAs (eRNAs) are subclass of lncRNAs that are synthesized from enhancer regions and have also been shown to coordinate gene expression. The biological function and significance of most lncRNAs and eRNAs remain to be determined. Epithelial to mesenchymal transition (EMT) is a ubiquitous cellular process that occurs during cellular migration, homeostasis, fibrosis, and cancer-cell metastasis. EMT- transcription factors, such as SNAI1 induce a complex transcriptional program that coordinates the morphological and molecular changes associated with EMT. Such complex transcriptional programs are often subject to coordination by networks of ncRNAs and thus can be leveraged to identify novel functional ncRNA loci. Here, using a genome-wide CRISPR activation (CRISPRa) screen targeting ~10,000 lncRNA loci we identified ncRNA loci that could either promote or attenuate EMT. We discovered a novel locus that we named SCREEM (SNAI1 cis-regulatory eRNAs expressed in monocytes). The SCREEM locus contained a cluster of eRNAs that when activated using CRISPRa induced expression of the neighboring gene SNAI1, driving concomitant EMT. However, the SCREEM eRNA transcripts themselves appeared dispensable for the induction of SNAI1 expression. Interestingly, the SCREEM eRNAs and SNAI1 were co- expressed in activated monocytes, where the SCREEM locus demarcated a monocyte-specific super-enhancer. These findings suggest a potential role for SNAI1 in monocytes. Exploration of the SCREEM-SNAI axis could reveal novel aspects of monocyte biology

    Dendritic Cells Reveal a Broad Range of MHC Class I Epitopes for HIV-1 in Persons with Suppressed Viral Load on Antiretroviral Therapy

    Get PDF
    Background: HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART. Principal Findings: We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a. Significance: There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection. Β© 2010 Huang et al

    Whole-genome screen identifies diverse pathways that negatively regulate ciliogenesis.

    Get PDF
    We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving outside-in and inside-out signaling that restrain cilium assembly

    60 kD Ro and nRNP A Frequently Initiate Human Lupus Autoimmunity

    Get PDF
    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, humoral autoimmune disorder. The unifying feature among SLE patients is the production of large quantities of autoantibodies. Serum samples from 129 patients collected before the onset of SLE and while in the United States military were evaluated for early pre-clinical serologic events. The first available positive serum sample frequently already contained multiple autoantibody specificities (65%). However, in 34 SLE patients the earliest pre-clinical serum sample positive for any detectable common autoantibody bound only a single autoantigen, most commonly 60 kD Ro (29%), nRNP A (24%), anti-phospholipids (18%) or rheumatoid factor (15%). We identified several recurrent patterns of autoantibody onset using these pre-diagnostic samples. In the serum samples available, anti-nRNP A appeared before or simultaneously with anti-nRNP 70 K in 96% of the patients who had both autoantibodies at diagnosis. Anti-60 kD Ro antibodies appeared before or simultaneously with anti-La (98%) or anti-52 kD Ro (95%). The autoantibody response in SLE patients begins simply, often binding a single specific autoantigen years before disease onset, followed by epitope spreading to additional autoantigenic specificities that are accrued in recurring patterns

    Overrepresentation of IL-17A and IL-22 Producing CD8 T Cells in Lesional Skin Suggests Their Involvement in the Pathogenesis of Psoriasis

    Get PDF
    Background: Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ. Methodology/Principal Findings: By spectral imaging analysis of double-stained skin sections we demonstrated that IL-17 was mainly expressed by mast cells and neutrophils and IL-22 by macrophages and dendritic cells. Only an occasional IL-17(pos), but no IL-22(pos) T cell could be detected in psoriatic skin, whereas neither of these cytokines was expressed by T cells in normal skin. However, examination of in vitro-activated T cells by flow cytometry revealed that substantial percentages of skin-derived CD4 and CD8 T cells were able to produce IL-17A alone or together with IL-22 (i.e. Th17 and Tc17, respectively) or to produce IL-22 in absence of IL-17A and IFN-gamma (i.e. Th22 and Tc22, respectively). Remarkably, a significant proportional rise in Tc17 and Tc22 cells, but not in Th17 and Th22 cells, was found in T cells isolated from psoriatic versus normal skin. Interestingly, we found IL-22 single-producers in many skin-derived IL-17A(pos) CD4 and CD8 T cell clones, suggesting that in vivo IL-22 single-producers may arise from IL-17A(pos) T cells as well. Conclusions/Significance: The increased presence of Tc17 and Tc22 cells in lesional psoriatic skin suggests that these types of CD8 T cells play a significant role in the pathogenesis of psoriasis. As part of the skin-derived IL-17A(pos) CD4 and CD8 T clones developed into IL-22 single-producers, this demonstrates plasticity in their cytokine production profile and suggests a developmental relationship between Th17 and Th22 cells and between Tc17 and Tc22 cell
    • …
    corecore