94 research outputs found

    Energcalc: manual do usuário.

    Get PDF
    bitstream/item/134285/1/final7934.pd

    Comparison of computational methods for the identification of topologically associating domains.

    Get PDF
    Chromatin folding gives rise to structural elements among which are clusters of densely interacting DNA regions termed topologically associating domains (TADs). TADs have been characterized across multiple species, tissue types, and differentiation stages, sometimes in association with regulation of biological functions. The reliability and reproducibility of these findings are intrinsically related with the correct identification of these domains from high-throughput chromatin conformation capture (Hi-C) experiments. Here, we test and compare 22 computational methods to identify TADs across 20 different conditions. We find that TAD sizes and numbers vary significantly among callers and data resolutions, challenging the definition of an average TAD size, but strengthening the hypothesis that TADs are hierarchically organized domains, rather than disjoint structural elements. Performances of these methods differ based on data resolution and normalization strategy, but a core set of TAD callers consistently retrieve reproducible domains, even at low sequencing depths, that are enriched for TAD-associated biological features. This study provides a reference for the analysis of chromatin domains from Hi-C experiments and useful guidelines for choosing a suitable approach based on the experimental design, available data, and biological question of interest

    Pan-cancer inference of intra-tumor heterogeneity reveals associations with different forms of genomic instability.

    Get PDF
    Genomic instability is a major driver of intra-tumor heterogeneity. However, unstable genomes often exhibit different molecular and clinical phenotypes, which are associated with distinct mutational processes. Here, we algorithmically inferred the clonal phylogenies of ~6,000 human tumors from 32 tumor types to explore how intra-tumor heterogeneity depends on different implementations of genomic instability. We found that extremely unstable tumors associated with DNA repair deficiencies or high chromosomal instability are not the most intrinsically heterogeneous. Conversely, intra-tumor heterogeneity is greatest in tumors exhibiting relatively high numbers of both mutations and copy number alterations, a feature often observed in cancers associated with exogenous mutagens. Independently of the type of instability, tumors with high number of clones invariably evolved through branching phylogenies that could be stratified based on the extent of clonal (early) and subclonal (late) instability. Interestingly, tumors with high number of subclonal mutations frequently exhibited chromosomal instability, TP53 mutations, and APOBEC-related mutational signatures. Vice versa, mutations of chromatin remodeling genes often characterized tumors with few subclonal but multiple clonal mutations. Understanding how intra-tumor heterogeneity depends on genomic instability is critical to identify markers predictive of the tumor complexity and envision therapeutic strategies able to exploit this association

    Isotermas de adsorção de aminoácidos utilizados na alimentação de aves e suínos.

    Get PDF
    bitstream/item/141101/1/final8033.pd

    Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes.

    Get PDF
    Chromatin compartmentalization reflects biological activity. However, inference of chromatin sub-compartments and compartment domains from chromosome conformation capture (Hi-C) experiments is limited by data resolution. As a result, these have been characterized only in a few cell types and systematic comparisons across multiple tissues and conditions are missing. Here, we present Calder, an algorithmic approach that enables the identification of multi-scale sub-compartments at variable data resolution. Calder allows to infer and compare chromatin sub-compartments and compartment domains in >100 cell lines. Our results reveal sub-compartments enriched for poised chromatin states and undergoing spatial repositioning during lineage differentiation and oncogenic transformation
    corecore