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Abstract

Background: Chromatin folding gives rise to structural elements among which are clusters of densely interacting
DNA regions termed topologically associating domains (TADs). TADs have been characterized across multiple
species, tissue types, and differentiation stages, sometimes in association with regulation of biological functions. The
reliability and reproducibility of these findings are intrinsically related with the correct identification of these
domains from high-throughput chromatin conformation capture (Hi-C) experiments.

Results: Here, we test and compare 22 computational methods to identify TADs across 20 different conditions. We
find that TAD sizes and numbers vary significantly among callers and data resolutions, challenging the definition of
an average TAD size, but strengthening the hypothesis that TADs are hierarchically organized domains, rather than
disjoint structural elements. Performances of these methods differ based on data resolution and normalization
strategy, but a core set of TAD callers consistently retrieve reproducible domains, even at low sequencing depths,
that are enriched for TAD-associated biological features.

Conclusions: This study provides a reference for the analysis of chromatin domains from Hi-C experiments and
useful guidelines for choosing a suitable approach based on the experimental design, available data, and biological
question of interest.
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Background
The recent advent of chromatin conformation capture
technologies has made it possible to systematically investi-
gate spatial interactions between genomic loci at unprece-
dented resolution [1]. In particular, high-throughput
sequencing of genome-wide interactions (Hi-C) has led to
the identification and characterization of multiple
structural elements composing the chromatin architec-
ture ranging from DNA loops between loci less than a
megabase apart [2, 3] to hubs of inter-chromosomal
contacts [4] and chromosomal compartments [5]. Within
this compartmentalization of the genome, topologically
associating domains (TADs) have been described as

chromatin regions more frequently interacting within
themselves than among each other [6–8]. TADs have been
reported as highly conserved across species [6] and cell
types [9] and with a size ranging between 100 kb and 5
Mb [10]. Importantly, the functional relevance of these
domains has been investigated in development [11, 12]
and cell differentiation [13], as well as in disease contexts,
where modifications of TAD boundaries (start and end
points of the domain) have been associated with both gen-
etic diseases [14] and cancer [15, 16].
These results prompted a great interest in TADs and,

thus, in developing computational methods to identify
such domains from Hi-C experiments. In the past few
years, dozens of computational tools have been proposed
and applied to multiple datasets. Initial assessments of a
subset of these methods have already highlighted im-
portant differences between their output [17, 18]; how-
ever, a comprehensive comparison of many tools in
terms of robustness to data resolution and normalization
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and method parameters, of concordance between the re-
trieved TAD sets, and of their ability to recapitulate
TAD-associated biological features is missing. The
underlying assumption of all these tools is that chroma-
tin interactions are greater within TADs than among
them and the distribution of contacts towards upstream
or downstream chromosomal regions is mostly skewed
at TAD boundaries. To quantify these trends and iden-
tify such boundaries, most of the initial approaches re-
lied on fractioning each chromosome into small
fixed-size genomic intervals (or bins) and defining a lin-
ear score associated to each bin [2, 6, 19–28]. More re-
cently, alternative approaches have been designed
relying either on statistical models of the interaction dis-
tributions [29–32] or on clustering approaches applied
to the matrix of chromatin contacts [33–35] or on con-
cepts borrowed from graph theory, such as network
modularity, where the Hi-C contact matrix is thought of
as the adjacency matrix of a graph with bins as nodes
and TADs as dense subnetworks or “communities”
within such graph [36–38]. Ultimately, these tools return
a partition of the chromosome into disjoint or overlap-
ping domains, the latter potentially organized in a hier-
archy of nested domains. Given the high number of
proposed tools and the relevance of these domains in

regulating chromatin functions, questions arise on how
much these methods depend on the quality of the data,
whether they are interchangeable, and whether TADs
identified by these callers are associated with key bio-
logical features characteristic of chromatin domains.
In this study, we compared the performance of 22

TAD callers (Table 1 and Additional file 1), each on 20
different conditions (4 map resolutions each normalized
with 2 independent strategies, plus 12 additional contact
maps with variable sequencing depth), and assessed their
results in terms of robustness to variable data resolution
and normalization, concordance of the results among
different callers, and ability to recapitulate biological fea-
tures frequently associated with TADs and TAD bound-
aries. For callers identifying nested TADs, we separately
investigate the enrichment of TAD-associated biological
features at different levels of nesting. Each caller was run
on the high-quality Hi-C data generated for chromo-
some 6 of the lymphoblastoid cell line GM12878
(Fig. 1a). This model was chosen as it is one of the cell
lines where Hi-C data have been generated at the highest
resolution [2], and chromosome 6 had the average
chromosome length and number of reads per kb. Results
were often heterogeneous among callers and conditions,
prompting caution when drawing conclusions from

Table 1 TAD callers analyzed in this study

TAD caller Approach # parameters Hierarchical domains Inter-TAD gaps

3DNetMod Network features 18 Overlapping Yes

armatus Linear score 1 Overlapping No

arrowhead Linear score 1 Overlapping Yes

CaTCH Linear score 0 Nested No

CHDF Clustering 2 Disjoint No

chromoR Linear score 2 Disjoint No

ClusterTAD Clustering 2 Disjoint No

Directionality Index (DI) Linear score 3 Disjoint Yes

EAST Linear score 0 Disjoint Yes

GMAP Linear score 0 Nested Yes

HiCExplorer Linear score 5 Disjoint Yes

HiCseg Statistical model 3 Disjoint No

HiTAD Linear score 0 Disjoint Yes

ICFinder Clustering 2 Disjoint No

Insulation Score (IS) Linear score 5 Disjoint Yes

matryoshka Linear score 1 Nested Yes

MrTADFinder Network features 1 Disjoint No

PSYCHIC Statistical model 1 Nested No

spectral Network features 2 Disjoint No

TADbit Statistical model 0 Disjoint No

TADtree Statistical model 6 Overlapping No

TopDom Linear score 1 Disjoint Yes
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specific TAD partitions, but also highlighted consistent
good performance for some callers. Finally, results have
been validated on 4 additional chromosomes of variable
length and, for 6 selected callers, on additional datasets
including independent replicates of the GM12878 cell
line, human fetal fibroblast (IMR90), and mouse cortical
neurons (herein referred to MCN). Overall, this study
provides a useful reference to improve both future
method development and the design of studies based on
generation and analysis of Hi-C data.

Results
TAD identification across data resolutions and
normalizations
Data generated by high-throughput sequencing of chro-
matin conformation capture experiments (Hi-C) is typic-
ally organized in contact matrices, where interactions
are grouped into bins of a predefined size and the num-
bers of contacts between pairs of bins constitute the en-
tries of these matrices [1]. While the choice of the bin
size is somewhat arbitrary and dependent of the sequen-
cing depth, proposed heuristics select the minimum size
such that the total number of reads per bin is deemed
sufficient for a robust estimation of the contacts between
each pair of loci [2]. Small bin sizes are possible only
with high sequencing depth and allow for
high-resolution analyses of chromatin loops. Conversely,
large bin sizes might be used to study large chromatin
structural elements (e.g., compartments [2, 5]) or are the
necessary choice when a low number of reads are avail-
able leading to low-resolution matrices. As a conse-
quence, the bin size of a Hi-C matrix reflects its
resolution. Furthermore, values within such contact
matrices are typically normalized to account for tech-
nical and experimental biases such as variable sequen-
cing depth, GC content, fragment length, and sequence
mappability. For the purpose of our analyses, we gener-
ated contact matrices for chromosome 6 of the
GM12878 cell line with 4 different resolutions by sub-
sampling reads from the original dataset such that the
minimal bin size that guaranteed 1000 reads in at least

80% of the bins [2] was either 10 kb, 50 kb, 100 kb, or
250 kb. Then, we normalized each contact matrix using
two popular approaches: the iterative correction and
eigenvector decomposition [39] (ICE) and a parametric
model of local genomic features [40] (LGF, a.k.a. HiC-
Norm). In total, we tested 22 callers, each across 8 dif-
ferent conditions (Fig. 1a).
First, we examined the number of TADs and their

average size obtained with each TAD caller at each
matrix resolution using ICE-normalized data. Not all
callers successfully completed their run at all resolutions,
with certain callers not performing well either with the
smallest bin size (chromoR, HiCExplorer, HiTAD, and
MrTADFinder) or with the largest bin size (arrowhead
and PSYCHIC) (Fig. 1b, c—gray boxes). Interestingly, for
a given bin size, the number of identified TADs could
vary of up to two orders of magnitude among callers
(Fig. 1b). Consequently, so did vary the average TAD size
measured in number of base pairs (Fig. 1c). Similar re-
sults were obtained with LGF-normalized data (Add-
itional file 2: Figure S1a). For both normalization
procedures and examining TAD callers that returned re-
sults at all resolutions (n = 17), we found that the mean
TAD size was generally increasing with increasing bin
size (Fig. 1d and Additional file 2: Figure S1b). Con-
versely, the size of TADs measured in number of bins
was relatively stable (Fig. 1e and Additional file 2: Figure
S1c) for most of the callers, suggesting these callers tend
to call TADs with the same number of bins, rather than
corresponding to the same genomic region. In particular,
the growth trends exhibited by TAD size as a function of
bin size were remarkably similar independent of the
normalization strategy adopted (Additional file 2: Figure
S1d).
The slopes corresponding to the growth of the TAD

size, measured by number of either base pairs or bins,
based on the bin size adopted confirmed this tendency
among all callers (Fig. 1f ). Indeed, for almost all callers,
we found positive slopes when the TAD size was mea-
sured in base pairs, whereas slopes were negative and
close to zero when the TAD size was measured in

(See figure on previous page.)
Fig. 1 Identification of topologically associating domains (TADs) in chromosome 6 of the GM12878 cell line from ICE-normalized Hi-C data. a The
performance of 22 TAD callers (listed on the left and right) was assessed using Hi-C data of the chromosome 6 of the lymphoblastoid cell line
GM12878. b Total number of TADs detected in the ICE-normalized Hi-C data of chromosome 6 at four different resolutions (10, 50, 100, 250 kb)
by each of the 22 TAD callers. Color intensity is proportional to the number of TADs in log-scale, and gray boxes correspond to TAD callers that
did not successfully identified TADs at a given resolution. c Mean size (measured in kb) of the TADs detected in the ICE-normalized Hi-C data of
chromosome 6 at four different resolutions (10, 50, 100, 250 kb) by each of the 22 TAD callers. Color intensity is proportional to the mean size of
the TADs in log-scale, and gray boxes correspond to TAD callers that did not successfully identified TADs at a given resolution. d, e Variation of
the mean size of the TADs measured in kb (d) or in number of bins (e) across Hi-C matrix resolutions. Each line refers to a TAD caller (numbered
as indicated at the bottom of the plot), and only TAD callers that successfully identified TADs at all five resolutions are shown. f Slopes derived
from the linear fit of the curves in panel d (TAD size in kb across resolutions) versus slopes derived from the linear fit of the curves in panel e
(TAD size in number of bins across resolutions). Dots are colored based on the general approach used by the tool (“linear score,” “clustering,”
“statistical model,” “network features”—see Table 1). The dashed line indicates the linear fit
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number of bins. Exceptions were the Directionality
Index (DI) and MrTADFinder, although TAD sizes esti-
mated by the former did not vary monotonically and the
latter performed poorly with bin size equal to 10 kb af-
fecting the slope estimation. Interestingly, tools based on
a linear score (Fig. 1f, red dots) had a greater tendency
for identifying TADs with the same number of bins, ra-
ther than covering the same genomic regions, than tools
relying on clustering-based approaches or statistical
models (Fig. 1f, yellow and green dots, respectively).
Given different bin sizes corresponded to Hi-C contact

matrices with a different number of reads, i.e., different
resolutions, we wondered whether TADs observed in
these different matrices reflected nested domains, such
that the smallest domains are detectable with small bin
sizes, whereas only large domains comprising the smal-
lest ones can be detected with large bin sizes. If so, then
TAD boundaries detected with large bin sizes must be a
subset of the boundaries detected with small bin sizes
(Additional file 2: Figure S2a). We tested this hypothesis
for all TAD callers and computed the fraction of bound-
aries detected with a given bin size that contained at
least one of the boundaries detected with the bin size
immediately smaller (Additional file 2: Figure S2b). The
results were overall variable among callers, but for sev-
eral, we found that at least 50% of the boundaries were
retained between resolutions. Notably, although arrow-
head, GMAP, and PSYCHIC detect by default nested or
overlapping TADs, their rate of boundary conservation
was typically below 50% (Additional file 2: Figure S2b).
The presence of nested TADs can therefore explain, at

least in part, the highly variable TAD size observed with
different bin sizes. Nonetheless, boundary conservation
was often low (below 50%) and size variability among
callers for a given bin size remained pronounced. Over-
all, these findings challenge the possibility of defining a
“typical TAD size” and indicate that the average size of a
TAD is largely dependent of the tool used to identify
these domains and resolution of the contact matrix.
To assess the similarity between TADs identified by

the same caller using different normalizations or bin
sizes, we recurred to the Measure of Concordance
(MoC), previously introduced to compare clustering par-
titions [41]. Briefly, given two sets of TADs, MoC as-
sesses the overlap between each pair of TADs, measured
in number of base pairs and considering the overall size
of both TADs (Additional file 2: Figure S2c). MoC
ranges from 0, complete lack of concordance, to 1, per-
fect concordance, and it has the desirable property of
being symmetric.
First, we compared TADs determined by each caller at

a given bin size using ICE or LGF normalization strat-
egy. Overall, TADs were often highly concordant be-
tween normalizations (MoC > 0.75) for about half of the

callers (Fig. 2a), although results from ClusterTAD, spec-
tral, chromoR, and matryoshka seemed particularly sen-
sitive to the applied normalization strategy. We could
not run 3DNetMod on LGF-normalized data, hence
could not make the comparison for this caller. The con-
cordance between TADs determined at different bin
sizes was lower than it was between normalization strat-
egies in all callers (Fig. 2b). In particular, as the ratio be-
tween the compared bin sizes increased, the
concordance between the resulting sets of TAD de-
creased and almost invariably fell below 0.5 for five- to
ten-fold bin size ratios (Fig. 2b). MoC values obtained by
each caller between normalization strategies correlated
with values obtained between different bin sizes (Fig. 2c).
Overall, HiTAD, CHDF, CaTCH, TopDom, TADbit, PSY-
CHIC, and HiCseg demonstrated robust and consistent
TAD partitions independent of the normalization and
bin size adopted (Fig. 2c, top right corner).
Given many of these approaches rely on different pa-

rameters, we wondered how much the choice of these
parameters influences the results. We should note that
all callers have here been run using recommended pa-
rameters or default ones if no recommendations were
made (see Additional file 1). For a subset of them, we
compared the concordance between TADs identified
using recommended or other parameters, but same bin
size. Overall, most tools returned concordant TAD parti-
tions (MoC > 0.7, Additional file 3: Table S1), with the
exception of the Directionality Index (MoC > 0.6 for two
independent comparisons), and Insulation Score (MoC
= 0.32 and MoC = 0.4 for two independent comparisons).
Both DI and IS have window size parameters that are
highly dependent on the bin size adopted and, indeed, in
our analyses we tuned these parameters when changing
bin size (Additional file 1). These tests seem to indicate
that parameter optimization is not a strict requirement
for most tools. However, testing the robustness of a
caller to its parameters might sometimes be necessary
and callers with few or no parameters are preferable in
this regard (see Table 1).
The ability of a caller to robustly perform independent

of the resolution and quality of the data is highly desir-
able, as Hi-C experiments with high sequencing depth
remain costly and, thus, difficult to scale to large data-
sets. To specifically assess the performance of all callers
when different numbers of reads are available, independ-
ent of the bin size of the matrix, we systematically sub-
sampled Hi-C contacts determined for the GM12878
cell line (chromosome 6) and compared the TADs called
with subsampled reads with those obtained from the
complete contact matrix. For this test, we used
ICE-normalized data binned in 50-kb intervals and gen-
erated 13 different matrices using different percentages
of reads that ranged from 100 to 0.01%, corresponding
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to an estimated cost ranging from over $1000 to less
than a dollar (Fig. 3 top panel). Some of the tested cal-
lers failed to return a TAD partition for low sequencing
depth, in particular arrowhead and HiTAD did not iden-
tify TADs with less than 1% of the reads (Additional file 2:
Figure S3). Interestingly, the number of TADs and TAD
size determined by each caller across subsampling (Add-
itional file 2: Figure S3) were nonetheless less variable
then they were when changing the bin size of the matrix
(Fig. 1b, c). In agreement with our results across normal-
izations and bin sizes, TopDom, TADbit, HiCseg, and
CaTCH all demonstrated highly concordant results:
TADs generated with these callers using the full set of
contacts were highly reproducible using less than 1% of

the reads (MoC > 0.75) (Fig. 3). Notably, the best per-
formance was here achieved by the Insulation Score (IS)
that obtained MoC values > 0.75 with up to 0.2% of the
total number of reads (Fig. 3) in agreement with recent
analyses [42]. Using these callers would therefore lead to
similar results at a fraction of the cost.

Comparison of TADs identified by different callers
Up to this point, we have evaluated the concordance and
robustness of the results obtained by each individual
caller using different bin sizes and normalization strat-
egies. Next, we compared the TADs obtained using dif-
ferent callers to assess their concordance. To this
purpose, we fixed the bin size to 10 kb, corresponding to
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the matrices with the highest resolution, and used only
ICE-normalized data, given the high concordance of re-
sults obtained with two normalization strategies for
most callers. Using these settings, we could compare re-
sults from 18 callers.
First, we explored how frequently the same TAD or

TAD boundary was called by different TAD callers
(shared boundaries/TADs), using variable minimum dis-
tances between boundaries to determine shared TADs
and TAD boundaries. Across all TAD callers, most of
the boundaries were detected by less than half of the
methods (Fig. 4a), and even less shared were TADs, with
the highest fraction of them being detected by less than
4 callers (Fig. 4b). As expected, with increasing mini-
mum distance, the fraction of shared TADs and TAD
boundaries increased with distributions centered around
8 and 4 callers, respectively, for a minimum distance of
5 bins (± 50 kb). TADs and TAD boundaries detected by
each caller exhibited different extent of agreement. Im-
posing a minimum distance of 2 bins (± 20 kb), most of
the callers found at least 50% of boundaries that were
also detected by more than 5 other callers (Fig. 4c) and
this percentage was greater than 80% for the Direction-
ality Index approach (DI), GMAP, TADbit, and arrow-
head. Conversely, the majority of the boundaries called

by matryoshka, armatus, PSYCHIC, spectral, and 3DNet-
Mod were detected by less than 5 callers. It should be
noted that, with the exception of PSYCHIC, these callers
also identify a large number of boundaries (Fig. 4c).
Consistently, DI, GMAP, arrowhead, and TADbit also
identify the highest proportion of TADs that were also
called by more than 5 other callers, whereas the majority
of TADs called by IS and ClusterTAD were never de-
tected by the other callers (Fig. 4d).
Next, we compared results from each pair of callers by

Measure of Concordance (MoC). Average pairwise MoC
values identify CHDF, TopDom, HiCseg, ICFinder, and
CaTCH as the callers with highest mean MoC (MoC >
0.4) (Fig. 4e). Notably, these callers also scored among
the most robust across bin sizes and normalization strat-
egies (Fig. 2c–e). Stochastic neighbor embedding analysis
(t-SNE [43]) of MoC values obtained by each caller
against the others revealed three major groups of callers
exhibiting high MoC values within group and low
among groups (Fig. 4f ). Callers within each group were
often based on different algorithmic strategies; nonethe-
less, the number of TADs found by each caller was simi-
lar within group, but significantly different among them
(Fig. 4g). Highly correlated pairwise MoC values were
detected when comparing TAD partitions determined
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with bin size of 50 kb (Pearson’s correlation = 0.6, p
value = 5E−33). To assess the concordance among TADs
called by different methods in an independent manner,
we computed the ratio between conserved TADs among
each pair of callers and the minimum total number of
TADs found by the two callers, i.e., the maximum pos-
sible number of TAD that can be conserved between the
pair. The resulting mean conservation ratios were corre-
lated with the mean MoC for all callers except for arma-
tus, matryoshka, and arrowhead, which were the top
three scoring based on this new analysis (Additional file 2:
Figure S4a). Interestingly, the former two found by far
the largest number of TADs; thus, even a small fraction
of conserved TADs could still represent a relatively large
number of domains, whereas arrowhead found the smal-
lest number of TADs, indicating a high fraction of these
domains were also called by other methods. Overall,
these findings provide a reference to anticipate the con-
cordance of the results based on specific TAD partitions
depending on the adopted caller.

TAD enrichment for CTCF and cohesin binding and
histone methylation marks
While robustness and concordance are important fea-
tures to assess the performance of a given algorithmic
approach, the quality of its output is ultimately assessed
by whether the results recapitulate true features of the
system being analyzed. However, here, we lack a “true”
set of TADs that could be used as a reference. Further-
more, the highly variable number of TADs and TAD
sizes across callers challenge the design of synthetic
datasets where a true TAD partition is pre-defined. To
overcome these limitations, we evaluated the biological
relevance of the TADs identified by each TAD caller, by
assessing specific biological features that have been
found frequently associated with TADs and/or TAD
boundaries.
The chromatin insulator protein CTCF and the cohe-

sin complex have been frequently reported at TAD
boundaries, and they seem to be required for boundary
formation [2, 6, 44] (Fig. 5a). Thus, we tested whether
TAD boundaries identified by each caller were enriched
for binding of these proteins. Peaks for CTCF, RAD21,
and SMC3 were determined from chromatin
immuno-precipitation followed by high-throughput se-
quencing (ChIP-seq) data and we explored the intensity
of these peaks at domain boundaries and flanking re-
gions. For some callers, e.g., TopDom, peaks of CTCF,
RAD21, and SMC3 were pronounced at domain bound-
aries (Fig. 5b), whereas for others, e.g., spectral, peaks of
the 3 proteins did not show any association with the
TAD boundaries identified by the caller (Fig. 5c). To
quantify these trends, we computed the percentage of
TAD boundaries that were tagged by either of the 3

proteins (Additional file 2: Figure S4b) and the fold
change between peaks found at TAD boundaries and
those at adjacent flanking regions (Fig. 5d). Results from
these analyses were correlated and consistent for all 3
proteins and identified arrowhead, DI, TopDom, and
CHDF among the top 5 callers based on both criteria,
with greater than twofold increase of CTCF binding sig-
nal at TAD boundaries and ~ 40% or more boundaries
tagged by either CTCF or cohesin. Vice versa, matry-
oshka, ClusterTAD, armatus, and spectral always scored
at the bottom with fewer than 20% of the boundaries
tagged by either CTCF or cohesin and exhibiting no dif-
ferent ChIP-seq peak intensities between boundaries and
flanking DNA regions (Additional file 2: Figure S4b and
Fig. 5d). Given the variable level of agreement among
TAD boundaries called by different methods, we tested
CTCF enrichment at boundaries called by at least 50%
of the callers (n = 9) compared to boundaries called by
less than half of them. For all methods, we found a dra-
matic increase of CTCF fold changes for boundaries
called by 50% or more callers (Fig. 5e) and this trend in-
creases with the minimum number of callers consist-
ently calling a boundary (Fig. 5f ). Overall, shared
boundaries always exhibited higher CTCF ChIP-seq sig-
nal than adjacent regions and the more callers identified
a boundary, the higher the fold change of the signal
(Fig. 5f ).
Given some TAD callers can identify hierarchy of

TADs or overlapping TADs (not necessarily nested—see
Table 1), we investigated CTCF binding at TAD bound-
aries based on their nesting level. For this analysis, we
only retained perfectly nested TADs and nesting levels
comprising at least 10 TADs. Moreover, we define as the
“lowest” nesting level (or L1), the set of TADs that do
not contain any other nested TAD. In general, CTCF
signal fold changes increased with the level of nesting,
especially for tools that at the lowest level identified a
very high number of small TADs (armatus, matryoshka,
and 3DNetMod) and was positively correlated with the
TAD mean size (Pearson’s correlation = 0.37). However,
for mean sizes between 250 kb and 1.25Mb, this correl-
ation was no longer observed (Pearson’s correlation =
0.05) and results were thus independent of the TAD size
(Fig. 5g—gray area). With increasing nesting, the num-
ber of TADs identified by each caller rapidly decreased.
This might be a desirable feature for tools such as arma-
tus and matryoshka that initially identified > 2500 TADs
each. For these approaches, higher nesting levels led to a
smaller number of TADs better associated with CTCF
binding, even though CTCF fold changes remained con-
sistently smaller than those observed for top scoring
tools, such as arrowhead, DI, and TopDom. On the
other hand, best CTCF fold change for GMAP and
CaTCH (both obtained at L2—Fig. 5g) were derived
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Fig. 5 Assessment of TAD calling with biological features. a Schematic representation of the structural proteins CTCF (orange), RAD21 (blue), and
SMC3 (red) that are enriched at TAD boundaries. b, c Representative examples of ChIP-seq peak signals (average number of peaks in 5-kb
intervals) for TopDom (b) and spectral (c). Peak signals for CTCF (orange line), RAD21 (blue line), and SMC3 (red line) are overlaid. d Fold change
of structural protein peak signals at TAD boundaries for CTCF (orange bar), RAD21 (blue bar), or SMC3 (red bar). TAD callers are ordered from left
to right by increasing average fold change of peak signals of the three proteins. The fold change was computed as the ratio of protein binding
signal at TAD boundaries (upper-left, red area) versus flanking regions (upper left, gray areas) minus 1. e Fold change of CTCF peak signal for
boundaries called by at least 50% of the callers (red bars) or less than 50% of the callers (blue bars). f Mean fold change across callers of CTCF
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Overall Pearson’s correlation = 0.37, Pearson’s correlation within the window [250–1250 kb] (gray area) is 0.05. The size of the dots is proportional
to the number of TADs. h Schematic representation of H3K36me3 (green) or H3K27me3 (red) histone mark ChIP-seq read counts observed within
TADs: TADs are typically enriched either for H3K36me3 marks (example of the left) or for H3K27me3 marks (example on the right) in a mutually
exclusive manner. i For each TAD caller, fraction of TADs with a significant (high or low) H3K27me3/H3K36me3 log10-ratio (FDR < 0.1)
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from 87 TADs (mean size = 1Mb) and 34 TADs (mean
size = 550 kb), respectively, suggesting that these are not
representative of the entire chromosome and lower nest-
ing levels should also be considered to explore the full
organization of the chromatin into TADs.
Histone-3 methylation marks are indicative of tran-

scriptional activity within specific regions of the genome.
Interestingly, it has been shown that TADs are fre-
quently enriched for either activating (H3K36me3) or
repressing (H3K27me3) marks [2, 7]. Hence, we ex-
plored the ratio between H3K27me3 and H3K36me3
within each TAD found by each caller and determined
the percentage of TADs that exhibited a significant en-
richment for either mark (empirical FDR < 0.1, see the
“Methods” section) (Fig. 5h). Arrowhead was the top
scoring approach also in this analysis, indicating that do-
mains identified by this caller most frequently exhibit
TAD-associated biological features (Fig. 5i). 3DNetMod,
GMAP, CHDF, and HiCseg all identified more than 50%
of TADs with a significant enrichment for either
H3K36me3 or H3K27me3, whereas EAST, ClusterTAD,
PSYCHIC, spectral, and TADbit scored at the bottom of
this analysis, with less than 10% of the identified do-
mains enriched for either of the histone marks (Fig. 5i).
The association between TADs and H3K27me3 and
H3K36me3 was largely independent of the nesting levels,
for tools that identified nested TADs (Additional file 2:
Figure S4c).
Overall, the results from these analyses based on

known TAD-associated biological features were corre-
lated, yet several tools scored well in one and poorly in
the other (Additional file 2: Figure S4d). Arrowhead al-
ways scored at the top, but also GMAP, CHDF, TopDom,
DI, HiCseg, and ICFinder exhibited a good enrichment
for both CTCF/cohesin binding and histone mark speci-
ficity (Additional file 2: Figure S4d) and these results
were confirmed even when accounting for nested TAD
structures found by specific tools.

Validation on independent chromosomes and datasets
All the analyses presented so far have been run on
chromosome 6 of the GM12878 cell line. To test the re-
producibility of our results on additional chromosomes,
we repeated key analyses on chromosomes 1, 3, 13, and
15, chosen to include both large and short chromosomes
with high sequencing depth. Specifically, we correlated
the results obtained on chromosome 6 with those de-
rived on the other chromosomes for the following ana-
lyses: mean TAD size, TAD concordance between
normalizations (ICE vs. LGF), TAD concordance among
different bin sizes, TAD concordance among different
callers, enrichment of CTCF and cohesin peaks at TAD
boundaries, and H3K27me3/H3K36me3 ratios within
TADs. Across all analyses, we could confirm highly

correlated results (Additional file 2: Figure S5), indicat-
ing that these are robust with respect to and independ-
ent of the chosen chromosome.
To further corroborate our results, we compared TAD

and TAD features derived from chromosome 6 of the
GM12878 cell line with four distinct datasets: two inde-
pendent replicates of the GM12878 model and two inde-
pendent Hi-C datasets including human fetal fibroblasts
(IMR90 cell line) and mouse cortical neurons (MCN)
[45]. For these analyses, we selected a subset of 6 callers
that exhibited variable performance across our tests:
arrowhead, CaTCH, HiCseg, ICFinder, spectral, and
TopDom. First, we compared the concordance (MoC)
between TADs identified by each caller in the two inde-
pendent GM12878 replicates. These datasets were separ-
ately generated, but derived from the same cell line;
hence, a high level of concordance is expected. Indeed,
all callers, except spectral, generated TADs with MoC
greater than 0.7; for CaTCH, HiCseg, and TopDom, it
was greater than 0.8. Next, we used the results derived
from the complete GM12878 dataset as a reference and
separately compared results from the GM12878 repli-
cates, IMR90, and MCN against this reference. The
mean TAD size identified by each caller was highly con-
sistent between each pair of datasets, both using 10-kb
and 50-kb bins, except for arrowhead that found bigger
TADs in MCN compared to GM12878 (Fig. 6a, b).
Nonetheless, the overall set of results were highly corre-
lated, with spectral always identifying the largest number
of TADs with smallest mean size, and arrowhead the
smallest number with the largest size. Similarly, the con-
cordance between TAD partitions determined by each
pair of callers was remarkably consistent between
GM12878 and the four other datasets (Fig. 6c). Finally,
we compared CTCF binding fold changes and the ratio
between H3K27me3 and H3K36me3 within TADs deter-
mined in the different experiments. Results for CTCF
fold changes were highly correlated (Fig. 6d), whereas
this correlation was weaker for the comparisons of his-
tone mark ratios with IMR90 and MCN (Fig. 6e), poten-
tially reflecting distinct specific histone mark changes
associated with different cell types and species. Overall,
results from independent replicates and datasets were
highly concordant with those obtained for the
GM12878, indicating that the performance of each
method was largely independent of the analyzed dataset.

Discussion
Topologically associating domains, or TADs, have re-
cently been investigated across multiple biological con-
texts, to explore their role in both normal and disease
development. The success and reliability of these studies
depend however on the ability to correctly identify such
domains. Here, we tested 22 distinct algorithmic
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approaches designed to detect TADs from Hi-C contact
matrices. Our benchmarking study was designed to as-
sess the results of each method on the same high-quality
dataset based on its robustness to variable binning of the
reads, data normalization, and sequencing depth; con-
cordance of the results with those obtained by different
methods; and biological significance of the identified
chromatin domains.
We found that the number and, thus, mean size of

TADs identified by different approaches on the same
dataset are extremely variable. Furthermore, variation of
the bin size used to generate the contact matrices led to
different mean TAD sizes, even for the same approach.
This variability suggests that it is difficult to propose a
general definition of average TAD size, since this often

depends on both the adopted method and data reso-
lution. Interestingly, most callers identified large TADs
when large bin sizes were used, and boundaries detected
in these conditions were often a subset of those found
with small bin sizes. These trends are consistent with a
hierarchical architecture of nested TADs, rather than a
single array of disjoint domains.
To summarize our results, we extracted top scoring

methods based on them, satisfying five different criteria:
robustness with respect to bin size and normalization
strategy (Fig. 2); cost-effective performance, based on
the ability of a caller to identify concordant TADs using
less than 1% of the reads (Fig. 3); reproducibility of the
results by other callers (mean MoC > 0.4) (Fig. 4); bio-
logical relevance of the results based on previously
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Zufferey et al. Genome Biology          (2018) 19:217 Page 12 of 18



reported TAD-associated features (Fig. 5); and computa-
tional efficiency, defined by the maximal running time
being below 103 s (< 17min) (Additional file 2: Figure
S6). We found that TopDom, HiCseg, and CaTCH satis-
fied at least four out of five criteria (Table 2). It should
be noted that TopDom and HiCseg do not identify TAD
hierarchies or overlapping TADs. If sequencing costs are
not a limiting factor, or to re-analyze available
high-quality datasets, approaches like CHDF, ICFinder,
and arrowhead would also be a suggested choice based
on their performance on high-resolution matrices. In
particular, at a 10-kb resolution, arrowhead was compu-
tationally efficient, scored at the top in both tests for en-
richment of TAD-associated biological features, and it
can output hierarchical TAD architectures. Importantly,
caller performances and ranking were validated on dis-
tinct chromosomes, independent replicates of the
GM12878 model, and independent datasets including
different stages of cell differentiation (fetal lung fibro-
blast, IMR90) and different species (mouse cortical
neurons).

Conclusions
Over the past few years, the soaring generation of chro-
matin conformation capture experiments has led to the
rapid development of several computational approaches
to analyze and interpret this data. In particular, multiple
methods have been developed to identify topologically
associating domains (TADs) from the Hi-C contact
maps. By systematically comparing the performance of
22 TAD callers, we highlighted poor concordance
among the results generated by these callers at different
resolutions, especially in terms of TAD numbers and
sizes. Importantly, we found that this variability poten-
tially reflects an underlying hierarchical domain
organization that is only partially captured by different

methods and at different resolutions. This observation
indicates that approaches that allow the identification of
hierarchical TAD structures might be preferable. How-
ever, we found that often TAD boundaries identified by
tools that can detect such hierarchical structures were
actually less conserved across experiments with different
resolutions, than boundaries identified by tools that do
not output domain hierarchies. Moreover, the use of
some of these hierarchical TAD callers might be limited
by high requirements of either data resolution (e.g., for
arrowhead) or computational time (e.g., for TADtree)
and, often, hierarchical levels return by these methods
are few (2 or 3) with the number of TADs rapidly de-
creasing at each level. In conclusion, while strategies
based on hierarchical TAD calling might ultimately be
more appropriate to study chromatin domain architec-
ture, current implementations need to be improved to
reach broad applicability.
Overall, our work complements previous benchmark-

ing studies [17, 18, 46] on Hi-C data analysis to provide
a set of guidelines for the design of Hi-C computational
and molecular studies and improve the robustness and
reproducibility of their findings.

Methods
Hi-C data
Within this study, we used in situ Hi-C data for the
GM12878 cell line generated by the Aiden-Lieberman
group [2] (Gene Expression Omnibus accession number
GSE63525). Lists of Hi-C contacts were downloaded, fil-
tered for MAPQ ≥ 30 and merged across replicates.
Intra-chromosomal lists of contacts were derived by
extracting contacts between loci belonging to the same
chromosome. The performance of the 22 selected TAD
calling algorithms was extensively assessed using
intra-chromosomal contact matrices generated for

Table 2 Result summary

Top scoring
by:

Robustness to resolution and
normalization

Cost-
effectiveness

Concordance with other TAD
callers

Enrichment for biological
features

Computational
efficiency

TopDom * * * * *

HiCseg * * * *

CaTCH * * * *

CHDF * * *

ICFinder * * *

TADbit * *

arrowhead * *

GMAP * *

DI *

IS *

EAST *

*TAD caller was among the top scoring in this test
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chromosome 6 of the GM12878 cell line, but key ana-
lyses were validated on chromosomes 1, 3, 13, and 15.
Hi-C contact matrices were pre-processed with two differ-
ent normalization strategies and at five different resolu-
tions, for a total of 10 conditions for each caller. All
custom scripts used in the analyses are available at https://
github.com/CSOgroup/TAD-benchmarking-scripts.

Hi-C matrix normalization
Hi-C contact matrix normalization was performed using
either the iterative correction and eigenvector decom-
position method [39] (ICE) or a parametric model based
on local genomic features (LGF) implemented by the
HiCNorm method [40], using a Poisson regression
model. ICE assumes equal visibility of each bin and con-
siders that the observed interaction frequency can be
written as a product of factorizable biases and “true”
contact probabilities. ICE then proceeds through an it-
erative algorithm, dividing each row by its mean and up-
dating the total vector of biases at each step. The
procedure stops when the variance of the additional
biases is negligible. In contrast, the LGF method expli-
citly models three systematic sources of biases (mapp-
ability, GC content, and restriction fragment length)
using a Poisson regression that includes a parameter for
each of these features. The normalized contacts are then
the residuals of the fitted regression model.
Both approaches are implemented in the HiTC R

package [47], respectively by the normICE (run with
max_iter=1000) and normLGF (run with a Poisson re-
gression model, family=“poisson”) functions.
Unlike ICE, LGF requires additional information to

annotate each bin of the matrix with respect to the three
bias features included in the regression model. Here, we
used for this purpose the getAnnotatedRestrictionSites
function from the HiTC package (with default parame-
ters). For the restriction fragment length and GC content
features, the function also needs reference genome as in-
put (here derived from the Bsgenome.Hsapiens.UCSC.hg19
R package). As for the mappability feature, a mappability
file was retrieved from http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeCrgMapabilityAlign100mer.bigWig.

Hi-C matrix resolutions
To generate intra-chromosomal Hi-C contact maps at
various resolutions, we adopted a previously introduced
definition of map resolution [2], i.e., the resolution of a
contact map is given by the smallest bin size such that at
least 80% of the bins make at least 1000 contacts. Based
on this definition, we subsampled the intra-chromosomal
list of contacts list such that the smallest bin size satisfying
the above criteria was, respectively, 10 kb, 50 kb, 100 kb,
250 kb, and 1Mb.

For the comparison of TAD partitions described in
Fig. 3, we fixed the bin size at 50 kb and subsampled the
complete intra-chromosomal list of contacts for decreas-
ing percentages of reads. For each caller, TAD partitions
determined from the subsampled Hi-C contact maps
were compared to the partition obtained from the
complete contact map by Measure of Concordance
(MoC) (see the “Assessing concordance between TAD
partitions” section).

TAD callers
In total, we used and compared 22 TAD callers (see
Additional file 1 for a description of each method and
chosen parameters). Briefly, we categorize each caller in
four groups based on the general approach adopted. The
majority of the methods computes a linear score associ-
ated to each bin summarizing the distribution of con-
tacts made by that bin. This group includes armatus,
arrowhead, CaTCH, chromoR, DI, EAST, HiCExplorer,
HiTAD, IS, matryoshka, and TopDom. A second group
relies on statistical models of the interaction distribu-
tions and includes GMAP, HiCseg, PSYCHIC, TADbit,
and TADtree. A third group uses instead clustering ap-
proaches applied to the Hi-C matrix and includes CHDF,
ClusterTAD, and ICFinder. Finally, a fourth group of cal-
lers applies network metrics based on the concept of net-
work modularity or connectivity to identify communities
of interacting genomic loci; these are 3DNetMod,
MrTADFinder, and spectral. As often as possible, we ap-
plied these tools with their default user-defined parame-
ters or set these parameters to the values recommended
by the authors in the corresponding manuscript or soft-
ware support file (see Additional file 1 for details). The
outputs of the different callers were converted to a uni-
form three-column format of 1-based genomic coordi-
nates indicating for each TAD its chromosome, start
position (i.e., starting genomic coordinate of the bin
identified as left boundary), and end position (i.e., ending
genomic coordinate of the bin identified as right bound-
ary), e.g., chr1, 1, 10000; chr1, 10001, 20000; etc.

Robustness to parameter tuning
Analyses with other parameter settings were run on
50-kb ICE-normalized Hi-C matrix (GM12878 dataset),
except for DI and IS where the 10-kb matrix was used.

Arrowhead
Two additional settings for the size of the sliding win-
dow were tested: 1000 and 3000 [default 2000].

DI and IS
For the supplementary analyses, we ran DI and IS using
two additional window sizes, 2.5Mb and 5Mb, that
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correspond to the window size setting described in the
main text for the 50-kb and 100-kb bin sizes, respect-
ively [default at 10-kb bin size is 500 kb].

HiCseg
In the main text, we used HiCseg with the model (“D”)
that assumes that the means are constant outside the di-
agonal. For the supplementary analysis, we ran HiCseg
under the assumption that the means are constant in
bands outside the diagonal blocks (“Dplus” model).

ICFinder
For this caller, we tried varying the thresholds used for
merging the clusters [default: σ− = 0.3, σ+ = 3,], changing
them such that they define a broader or a narrower
range: σ− = 0.1, σ+ = 6 and σ− = 0.6, σ+ = 2, respectively.

Spectral
Here, we tested different algebraic connectivity thresh-
old: λ = 0.4 and λ = 0.9; default setting was λ = 0.8. This
value is used as a stopping criterion in the recursion step
of the spectral algorithm (upper bound of the Fiedler
number).

TopDom
Two additional window sizes (“w”) were tested: 10 and
20; default was w = 5; recommended range is 5–20. This
parameter defines the size of the window used to com-
pute the binSignal.

Assessment of TAD caller performance
Assessing concordance between TAD partitions
To compare TAD partitions, we adopted the Measure of
Concordance (MoC), a metric introduced to compare
clustering assignments [41]. The MoC is defined as
follows:

MoCðP;QÞ ¼

(
1i f NP ¼ NQ ¼ 1

1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
NPNQ

p
−1Þ

 XNP

i¼1

XNQ

j¼1

∥Fi; j∥2

∥Pi∥∥Q j∥
−1

!
otherwise

where P and Q are the sets of TADs being compared in-
cluding NP and NQ TADs, respectively. Pi and Qj are two
individual TADs within P and Q having size ||Pi|| and
||Qj||, respectively, measured in base pairs. Finally, ||Fij||
corresponds to the size (number of base pairs) of the
overlap between the two TADs Pi and Qj.
The MoC is symmetric and upper and lower bounded,

ranging from 0 (absence of concordance) to 1 (full con-
cordance). The MoC was initially designed for the com-
parison of clustering assignments generated by distinct
algorithms on the same number of elements. In the con-
text of TAD calling, base pairs correspond to the

elements being clustered, and the TADs to the clusters.
Some, but not all, of the callers that we compared iden-
tify both TADs and inter-TAD regions, i.e., genomic re-
gions that are in between TADs, but not called as TADs.
To allow for a systematic comparison among all callers,
we considered both TADs and inter-TAD regions as
clusters when computing the MoC.
In our study, the MoC was used in four different con-

texts: for each caller separately, to quantify the concord-
ance between partitions from ICE and LGF for each of
the five resolutions (robustness to normalization, Fig. 2
a), to quantify the concordance between TADs called at
different bin sizes (robustness to resolution, Fig. 2b), and
to quantify the concordance between TADs called from
subsampled Hi-C data (robustness to sequencing depth,
Fig. 3). Finally, TAD partitions identified by different
TAD callers were compared by MoC in a pairwise man-
ner using ICE-normalized data binned at 10-kb reso-
lution (Fig. 4e, f ).

TAD and boundary conservation
Besides the Measure of Concordance, we also assessed
the fractions of boundaries and TADs that were con-
served among resolutions (Additional file 2: Figure S2)
and callers (Fig. 4a–d). When TADs and TAD boundar-
ies were compared between different callers, results were
derived from Hi-C matrices at the same resolution, i.e.,
identical bin size. Here, a boundary b1 from caller 1 was
called conserved if a boundary b2 was found by caller 2
within a radius of x bins from b1 with x being an integer
value ranging from 0 to 5. A TAD found by caller 1 was
called conserved if both its boundaries were conserved
and they corresponded to the start and end positions of
exactly one TAD found by caller 2.
To determine TAD boundary conservation between

analyses run on Hi-C matrices at different resolutions,
i.e., different bin sizes, we called conserved a boundary
b1 found with the bigger bin size (e.g., 50 kb), if a bound-
ary b2 was found with the smaller bin size (e.g., 10 kb)
within the interval delimited by b1. As before, a TAD
found by caller 1 was called conserved if both its bound-
aries were conserved and they corresponded to the start
and end positions of exactly one TAD found by caller 2.

Comparison with ChIP-seq data for structural proteins
ChIP-seq peaks derived on GM12878 cells for CTCF and
members of the cohesin complex, SMC3 and RAD21, were
downloaded from ENCODE (www.encodeproject.org). For
SMC3, we used peaks from experiment ENCSR000DZP.
For RAD21, we used the intersection of peaks from experi-
ments ENCSR000EAC and ENCSR000BMY. For CTCF,
we used the intersection of peaks from experiments
ENCSR000DKV, ENCSR000AKB, ENCSR000DZN, and
ENCSR000DRZ. To determine the percentage of TAD
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boundaries tagged by a structural protein, we selected
TAD boundaries having at least one ChIP-seq peak of
the protein of interest overlapping with the boundary
or at least one of the two adjacent bins (i.e., ± 10 kb
from the boundary). To assess the differential binding
of these structural proteins at TAD boundaries com-
pared to non-boundary regions (Fig. 5d), we first de-
termined a structural protein profile (“SPP”) at each
boundary, by computing the average number of peaks
in 5-kb intervals within the region surrounding the
boundary (± 500 kb). Next, we computed the fold
change between the average SPP in a narrow interval
surrounding a TAD boundary (a.k.a. “peak”, ± 10 kb or
1 bin radius from the boundary) and the average SPP
in two regions spanning 100 kb each and located 400
kb apart from the TAD boundary. For the analysis of
shared boundaries, a boundary was called “shared” or
“not shared” based on the number of callers N that
identified that boundary (with a tolerance of two bins,
as described before). Fold change of ChIP-seq peaks
was computed for each category and for different N
values.

Hierarchy level analysis
For each TAD caller giving nested or overlapping do-
mains as output, we extracted each level of the hierarchy
at 10 kb in the following way:

1. Level 1 was the TAD partition at 10 kb used in all
the other analyses, such that no further nesting was
found for TADs and level 1

2. Each TAD at every additional level i (i = 2,...,N) had
to contain at least one domain (i.e., its start and
end) present at level i − 1. TADs of level i that were
coincident with TADs present at previous levels
were discarded

3. Levels containing less than 10 domains were
discarded from downstream analyses.

Specifically:

� For 3DNetMod, arrowhead, and TADtree, which
were giving overlapping domains as output, we
extracted levels 2 to N levels

� For armatus, we pooled the domains of suboptimal
solutions and we extracted levels 2 to N

� For CaTCH, we used three additional RI cutoffs (0.7,
0.75, and 0.8) to derive domains for levels 2, 3, and 4
respectively, discarding invalid domains as explained
above in points 2 and 3

� For GMAP, matryoshka, and PSYCHIC, we
extracted the additional levels directly from the
output, discarding invalid domains as explained
above in points 2 and 3

Comparison with ChIP-seq data for histone marks
ChIP-seq signals (fold change over control, pooled repli-
cates) for H3K27me3 and H3K36me3 derived on
GM12878 were downloaded from ENCODE (experiments
ENCSR000DRX and ENCSR000DRW, respectively). For
each caller, we computed an interval size equal to 10% of
the average size of the TADs (measured in base pairs) and
grouped the ChIP-seq signals into equally spaced intervals
of the calculated size. For each interval, we computed the
log10-ratio between the H3K27me3 and H3K36me3 sig-
nals (LR values or LR intervals). Next, we computed the
observed average LR values within each TAD and in order
to evaluate the significance of these values, we shuffled 10
times the LR intervals and derived a distribution of ran-
domized average within-TAD LR values. An empirical p
value was derived for eachTAD by comparing its observed
average LR with the distribution resulting from the shuf-
fling. Finally, empirical p values were corrected for false
discovery rate (FDR) using the Benjamini-Hochberg pro-
cedure and for each caller we reported the fraction of
TADs having an FDR corrected p value smaller than 0.1.

Computational performance
We assessed the computational performance of the TAD
callers with two different metrics: the user time (running
time) and the maximum resident set size (memory
usage). Normalization and pre-processing steps were not
taken into account. Timing and memory usage monitor-
ing were retrieved with the Linux command time. All
analyses were run on a x86_64-redhat-linux-gnu/Intel(R)
Xeon(R) CPU E5-2699 v4 @ 2.20GHz.

Validation on other chromosomes
Validation analyses were performed on chromosomes 1,
3, 13, and 15. Hi-C matrices for these chromosomes
were processed as for chromosome 6, and TADs were
detected using the 22 TAD callers (in case a TAD caller
failed for one of the chromosomes, it was discarded
from the comparison). Then, we relied on eight features
to compare the results obtained on chromosome 6 with
those derived for the other chromosomes in a pairwise
manner:
1) Mean TAD size. For each TAD caller, we retrieved

the average TAD size (in base pairs) of the TADs it iden-
tified and computed the Pearson’s correlation coeffi-
cients (PCC) between values obtained for chromosome 6
and those for each of the other tested chromosomes.
2) TAD MoC across normalizations. For each TAD

caller, we computed the Measure of Concordance (MoC)
between the partitions obtained for ICE and LGF, at a
fixed resolution (e.g., TopDom 10 kb ICE vs. TopDom 10
kb LGF). Corresponding values obtained for each of these
comparisons for chromosome 6 and for each of the other
tested chromosomes were correlated using PCC.
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3) TAD MoC across resolutions. For each TAD caller,
we computed the Measure of Concordance (MoC) between
all possible combinations of resolutions (bin sizes), for a
fixed normalization (e.g., TopDom 10 kb ICE vs. TopDom
50 kb ICE). Corresponding values obtained for each of
these comparisons for chromosome 6 and for each of the
other tested chromosomes were correlated using PCC.
4) TAD MoC across callers. We computed the MoC

between pairs of TAD callers for the Hi-C
ICE-normalized data at 10-kb resolution. MoC values
obtained for chromosome 6 were compared to those ob-
tained for each of the other tested chromosomes.
5–7) CTCF, RAD21, and SMC fold change. For each TAD

caller, we computed the fold change between the enrich-
ment of CTCF (or RAD21 or SMC3) ChIP-seq peaks at
TAD boundaries versus adjacent flanking regions. Fold
changes obtained across the callers for chromosome 6 were
then correlated with the ones obtained for each of the other
tested chromosomes by PCC.
8) Fraction of TADs with significant H3K27me3/

H3K36me3 ratios. For each TAD caller, we determined
the fraction of TADs showing a significant (FDR < 0.1)
log10-ratio between H3K27me3 and H3K36me3 signals,
assessed with the procedure described in the section
“Comparison with ChIP-seq data for histone marks.”
Subsequently, we computed the PCC between values ob-
tained for chromosome 6 and the ones obtained for each
of the other tested chromosomes.

Validation on other datasets
Hi-C data for replicates of GM12878 and IMR90 were
downloaded from GSE63525, and CTCF ChIP-seq data
were downloaded from ENCODE. Hi-C and ChIP-seq data
for mouse cortical neurons were downloaded from
GSE96107. All data were processed as described before, and
key analyses outlined in the section “Validation on other
chromosomes” were performed between chromosome 6 of
the full GM12878 dataset and of the other datasets.

Statistical analyses
All plots and statistical analyses were conducted on R
version 3.3.1 (R Core Team 2016). t-SNE analysis was
performed on the Pearson’s correlation matrix of the
matrix of pairwise MoC between callers using the Rtsne
function from the Rtsne R package [43] (with the param-
eters dims = 2, perplexity = 5, and pca = FALSE).
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