11,040 research outputs found

    Mascons as structural relief on a lunar Moho

    Get PDF
    Mascons as structural relief on lunar Moh

    Matching Subsequences in Trees

    Full text link
    Given two rooted, labeled trees PP and TT the tree path subsequence problem is to determine which paths in PP are subsequences of which paths in TT. Here a path begins at the root and ends at a leaf. In this paper we propose this problem as a useful query primitive for XML data, and provide new algorithms improving the previously best known time and space bounds.Comment: Minor correction of typos, et

    Simplified multitarget tracking using the PHD filter for microscopic video data

    Get PDF
    The probability hypothesis density (PHD) filter from the theory of random finite sets is a well-known method for multitarget tracking. We present the Gaussian mixture (GM) and improved sequential Monte Carlo implementations of the PHD filter for visual tracking. These implementations are shown to provide advantages over previous PHD filter implementations on visual data by removing complications such as clustering and data association and also having beneficial computational characteristics. The GM-PHD filter is deployed on microscopic visual data to extract trajectories of free-swimming bacteria in order to analyze their motion. Using this method, a significantly larger number of tracks are obtained than was previously possible. This permits calculation of reliable distributions for parameters of bacterial motion. The PHD filter output was tested by checking agreement with a careful manual analysis. A comparison between the PHD filter and alternative tracking methods was carried out using simulated data, demonstrating superior performance by the PHD filter in a range of realistic scenarios

    Catecholamines Mediate Multiple Fetal Adaptations during Placental Insufficiency That Contribute to Intrauterine Growth Restriction: Lessons from Hyperthermic Sheep

    Get PDF
    Placental insufficiency (PI) prevents adequate delivery of nutrients to the developing fetus and creates a chronic state of hypoxemia and hypoglycemia. In response, the malnourished fetus develops a series of stress hormone-mediated metabolic adaptations to preserve glucose for vital tissues at the expense of somatic growth. Catecholamines suppress insulin secretion to promote glucose sparing for insulin-independent tissues (brain, nerves) over insulin-dependent tissues (skeletal muscle, liver, and adipose). Likewise, premature induction of hepatic gluconeogenesis helps maintain fetal glucose and appears to be stimulated by both norepinephrine and glucagon. Reduced glucose oxidation rate in PI fetuses creates a surplus of glycolysis-derived lactate that serves as substrate for hepatic gluconeogenesis. These adrenergically influenced adaptive responses promote in utero survival but also cause asymmetric intrauterine growth restriction and small-for-gestational-age infants that are at greater risk for serious metabolic disorders throughout postnatal life, including obesity and type II diabetes

    Ractopamine HCl improved cardiac hypertrophy but not poor growth, metabolic inefficiency, or greater white blood cells associated with heat stress in concentrate-fed lambs

    Get PDF
    Heat stress decreases livestock performance and well-being (Hahn, 1999; Nienaber and Hahn, 2007), causes metabolic dysfunction that decreases growth efficiency (O’Brien et al., 2010), and alters cardiovascular function (Crandall et al., 2008). Each year, heat stress costs the livestock industry up to $2.5 billion (St-Pierre et al., 2003). Ractopamine HCl acts as a nutrient repartitioning agent (Beermann, 2002); classified as a β adrenergic agonist (βAA), it shares pharmacological properties with adrenaline (Beermann, 2002). βAA increase muscle mass and decreases fat deposition through unknown mechanisms (Beermann, 2002). In feedlot cattle, they increase growth efficiency and improve carcass yield and merit (Scramlin et al., 2010; Buntyn et al., 2017), which increases profit and allows more meat to be produced from fewer animals. However, because βAA act via a stress system, it is unclear how the products affect animals under stress conditions. β1AA and β2AA can also cause tachycardia, heart palpitations, and arrhythmias (Sears, 2002). We hypothesize that β1AA combined with heat stress may overstimulate the adrenergic system, resulting is metabolic dysfunction and decreased performance. Sheep are a common model for cattle, and thus, the objective of this study was to determine the impact of ractopamine HCl on health and cardiovascular parameters, growth, and metabolic efficiency in feeder lambs

    Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes Aerodynamics

    Get PDF
    An unsteady, 3D, implicit upwind Euler/Navier-Stokes algorithm is here used to compute the flutter characteristics of Wing 445.6, the AGARD standard aeroelastic configuration for dynamic response, with a view to the discrepancy between Euler characteristics and experimental data. Attention is given to effects of fluid viscosity, structural damping, and number of structural model nodes. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. The V-g analysis indicates that fluid viscosity has a significant effect on the supersonic flutter boundary for this wing

    Defect formation in superconducting rings: external fields and finite-size effects

    Full text link
    Consistent with the predictions of Kibble and Zurek, scaling behaviour has been seen in the production of fluxoids during temperature quenches of superconducting rings. However, deviations from the canonical behaviour arise because of finite-size effects and stray external fields. Technical developments, including laser heating and the use of long Josephson tunnel junctions, have improved the quality of data that can be obtained. With new experiments in mind we perform large-scale 3D simulations of quenches of small, thin rings of various geometries with fully dynamical electromagnetic fields, at nonzero externally applied magnetic flux. We find that the outcomes are, in practice, indistinguishable from those of much simpler Gaussian analytical approximations in which the rings are treated as one-dimensional systems and the magnetic field fluctuation-free.Comment: 10 pages, 3 figures, presentation at QFS2012, to appear in JLT

    Two‐Dimensional Phase Separation: Co-Adsorption of Hydrogen and Carbon Monoxide on the (111) Surface of Rhodium

    Get PDF
    The co‐adsorption of CO and H_2 on Rh(111) at low temperature (∼ 100 K) has been studied using thermal desorption mass spectrometry (TDS) and Low‐Energy Electron Diffraction(LEED). The probability of adsorption of CO on rhodium pretreated with hydrogen has been found to decrease slowly with increasing amounts of hydrogen on the surface. In addition, the effect of surface hydrogen on the CO LEED patterns indicates segregation of hydrogen and CO. These results can be explained in terms of a strong repulsive CO–H interaction and a mobile precursor model of CO adsorption

    Evidence for Nodal superconductivity in Sr2_{2}ScFePO3_{3}

    Full text link
    Point contact Andreev reflection spectra have been taken as a function of temperature and magnetic field on the polycrystalline form of the newly discovered iron-based superconductor Sr2ScFePO3. A zero bias conductance peak which disappears at the superconducting transition temperature, dominates all of the spectra. Data taken in high magnetic fields show that this feature survives until 7T at 2K and a flattening of the feature is observed in some contacts. Here we inspect whether these observations can be interpreted within a d-wave, or nodal order parameter framework which would be consistent with the recent theoretical model where the height of the P in the Fe-P-Fe plane is key to the symmetry of the superconductivity. However, in polycrystalline samples care must be taken when examining Andreev spectra to eliminate or take into account artefacts associated with the possible effects of Josephson junctions and random alignment of grains.Comment: Published versio

    Maternal Inflammation at Mid-gestation in Pregnant Rats Impairs Fetal Muscle Growth and Development at Term

    Get PDF
    Intrauterine growth restriction (IUGR) is a leading cause of perinatal morbidity and mortality. Low birth weight resulting from preterm birth and/or IUGR is an underlying factor in 60–80% of perinatal death worldwide, and is particularly common in developing countries (UNICEF, 2008). Furthermore, studies have linked IUGR and the associated fetal malnutrition to increased incidence of metabolic syndrome in adult life (Barker et al., 1993; Godfrey and Barker, 2000). The “thrifty phenotype hypothesis” developed by David Barker (Hales et al., 1991) states that IUGR-associated fetal malnutrition forces the fetus to spare nutrients by altering tissue-specific metabolism in order to survive. In utero, adaptive changes disproportionately impact skeletal muscle development, growth, and metabolism (Yates et al., 2016). Skeletal muscle is responsible for the majority of insulin-stimulated glucose utilization, and adaptive restriction in muscle growth capacity helps to spare glucose in the IUGR fetus but result in lifelong deficits in muscle mass and metabolic homeostasis (Brown and Hay, 2016). Skeletal muscle growth requires proliferation, differentiation, and fusion of myoblast into new muscle fibers early in gestation and fusion with existing fibers in the third trimester of pregnancy (Zhu et al., 2004). This process can be impaired by inflammation from resident macrophages within skeletal muscle. Classically activated M1 macrophages are pro-inflammatory but can polarize to an anti-inflammatory M2 phenotype that inhibits cytokine production and stimulates tissue repair by producing growth factors (Mantovani et al., 2004; Kharraz et al., 2013). The acute effects of inflammatory factors on myoblast function have been investigated in vitro (Frost et al., 1997; Guttridge et al., 2000), and we postulate that inflammatory stress may have similar effects on fetal myoblasts in utero. Impaired myoblast function and the resulting decrease in muscle growth capacity affect long-term metabolic health. Therefore, the objective of this study was to determine the effect of sustained maternal inflammation at mid-gestation on fetal mortality, muscle growth, and metabolic parameters at term
    corecore