20,286 research outputs found

    Application of the method local potential to the analysis of turbulent shear flows

    Get PDF
    It has been found that, in general, the local potential cannot be employed to obtain approximate solutions for the various correlations of turbulent properties which appear in the time averaged form of the conservation equations. Although the method of local potential is equivalent to the Galerkin method when the self-consistent condition is applied, the local potential can also be applied as an iterative algorithm in place of using the selfconsistent condition. This procedure offers an alternative to the Galerkin method and may be useful in obtaining approximate solutions for the total turbulent velocity. In addition, for certain simple turbulent shear flows the iterative algorithm may permit approximate, but non-empirical, solutions by modeling only the mean velocity and the Reynolds stress

    Study of boundary-layer transition using transonic-cone preston tube data

    Get PDF
    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones

    Calibration of transonic and supersonic wind tunnels

    Get PDF
    State-of-the art instrumentation and procedures for calibrating transonic (0.6 less than M less than 1.4) and supersonic (M less than or equal to 3.5) wind tunnels were reviewed and evaluated. Major emphasis was given to transonic tunnels. Continuous, blowdown and intermittent tunnels were considered. The required measurements of pressure, temperature, flow angularity, noise and humidity were discussed, and the effects of measurement uncertainties were summarized. A comprehensive review of instrumentation currently used to calibrate empty tunnel flow conditions was included. The recent results of relevant research are noted and recommendations for achieving improved data accuracy are made where appropriate. It is concluded, for general testing purposes, that satisfactory calibration measurements can be achieved in both transonic and supersonic tunnels. The goal of calibrating transonic tunnels to within 0.001 in centerline Mach number appears to be feasible with existing instrumentation, provided correct calibration procedures are carefully followed. A comparable accuracy can be achieved off-centerline with carefully designed, conventional probes, except near Mach 1. In the range 0.95 less than M less than 1.05, the laser Doppler velocimeter appears to offer the most promise for improved calibration accuracy off-centerline

    Novel black hole bound states and entropy

    Full text link
    We solve for the spectrum of the Laplacian as a Hamiltonian on R2−D\mathbb{R}^{2}-\mathbb{D} and in R3−B\mathbb{R}^{3}-\mathbb{B}. A self-adjointness analysis with ∂D\partial\mathbb{D} and ∂B\partial\mathbb{B} as the boundary for the two cases shows that a general class of boundary conditions for which the Hamiltonian operator is essentially self-adjoint are of the mixed (Robin) type. With this class of boundary conditions we obtain "bound state" solutions for the Schroedinger equation. Interestingly, these solutions are all localized near the boundary. We further show that the number of bound states is finite and is in fact proportional to the perimeter or area of the removed \emph{disc} or \emph{ball}. We then argue that similar considerations should hold for static black hole backgrounds with the horizon treated as the boundary.Comment: 13 pages, 3 figures, approximate formula for energy spectrum added at the end of section 2.1 along with additional minor changes to comply with the version accepted in PR

    On the Spectral Analysis of Quantum Electrodynamics with Spatial Cutoffs. I

    Full text link
    In this paper, we consider the spectrum of a model in quantum electrodynamics with a spatial cutoff. It is proven that (1) the Hamiltonian is self-adjoint; (2) under the infrared regularity condition, the Hamiltonian has a unique ground state for sufficiently small values of coupling constants. The spectral scattering theory is studied as well and it is shown that asymptotic fields exist and the spectral gap is closed

    Evaluating the articulation of programme theory in practice as observed in Quality Improvement initiatives

    Get PDF
    Background: The Action-Effect Method(AEM) was co-developed by NIHR CLAHRC Northwest London (CLAHRC NWL) researchers and QI practitioners, building on Driver Diagrams(DD). This study aimed to determine AEM effectiveness in terms of technical aspects (how diagrams produced in practice compared with theoretical ideals) and social aspects (how engagement with the method related to social benefits). Methods Diagrams were scored on criteria developed on theoretical ideals of programme theory. 65 programme theory diagrams were reviewed (21 published Driver Diagrams (External DDs), 22 CLAHRC NWL Driver Diagrams (Internal DDs), and 21 CLAHRC NWL Action-Effect Diagrams(AEDs)). Social functions were studied through ethnographic observation of frontline QI teams in AEM sessions facilitated by QI experts. Qualitative analysis used inductive and deductive coding. Results ANOVA indicated the AEM significantly improved the quality of programme theory diagrams over Internal and External DDs on an average of 5 criteria from an 8-point assessment. Articulated aims were more likely to be patient-focused and high-level in AEDs than DDs. The cause/effect relationships from intervention to overall aim also tended to be clearer and were more likely than DDs to contain appropriate measure concepts. Using the AEM also served several social functions such as facilitating dialogue among multidisciplinary teams, and encouraging teams to act scientifically and pragmatically about planning and measuring QI interventions. Implications: The Action-Effect Method developed by CLAHRC NWL resulted in improvements over Driver Diagrams in articulating programme theory, which has wide-ranging benefits to quality improvement, including encouraging broad multi-disciplinary buy-in to clear aims and pre-planning a rigorous evaluation strategy

    Consistent services throughout the week for acute medical care.

    Get PDF

    Correlation of Preston-tube data with laminar skin friction (Log No. J12984)

    Get PDF
    Preston tube data within laminar boundary layers obtained on a sharp ten-degree cone in the NASA Ames eleven-foot transonic wind tunnel are correlated with the corresponding values of theoretical skin friction. Data were obtained over a Mach number range of 0.30 to 0.95 and unit Reynolds numbers of 9.84, 13.1, and 16.4 million per meter. The rms scatter of skin friction coefficient about the correlation is of the order of one percent, which is comparable to the reported accuracy for calibrations of Preston tubes in incompressible pipe flows. In contrast to previous works on Preston tube/skin friction correlations, which are based on the physical height of the probe's face, this satisfactory correlation for compressible boundary layer flows is achieved by accounting for the effects of a variable "effective" height of the probe. The coefficients, which appear in the correlation, are dependent on the particular tunnel environment. The general procedure can be used to define correlations for other wind tunnels

    Resolving the pulsations of subdwarf B stars: HS 0039+4302, HS 0444+0458, and an examination of the group properties of resolved pulsators

    Full text link
    We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We extend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree ℓ\ell. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed κ\kappa pulsation mechanism as well as alternative theories.Comment: 32 pages, 18 figures, 7 tables. Accepted for publication in MNRA

    Influence of Growth Rate from Three to Twelve Months of Age on Reproductive Characteristics of Boars

    Get PDF
    The objective of the present study was to evaluate the influence of growth rate from 3 to 12 months of age on the onset of puberty, libido and fertility of boars
    • …
    corecore