5,551 research outputs found
DNA Strand-Transfer Activity in Pea (\u3ci\u3ePisum sativum\u3c/i\u3e L.) Chloroplasts
The occurrence of DNA recombination in plastids of higher plants is well documented. However, little is known at the enzymic level. To begin dissecting the biochemical mechanism(s) involved we focused on a key step: strand transfer between homologous parental DNAs. We detected a RecA-like strand transfer activity in stromal extracts from pea (Pisum sativum L.) chloroplasts. Formation of joint molecules requires Mg2+, ATP, and homologous substrates. This activity is inhibited by excess single-stranded DNA (ssDNA), suggesting a necessary stoichiometric relation between enzyme and ssDNA. In a novel assay with Triton X-100-permeabilized chloroplasts, we also detected strand invasion of the endogenous chloroplast DNA by 32P-labeled ssDNA complementary to the 16S rRNA gene. Joint molecules, analyzed by electron microscopy, contained the expected displacement loops. The downloadable document attached here contains only an abstract, acknowledgment of research funding, and a link to the full text on the Plant Physiology website
DNA Strand-Transfer Activity in Pea (\u3ci\u3ePisum sativum\u3c/i\u3e L.) Chloroplasts
The occurrence of DNA recombination in plastids of higher plants is well documented. However, little is known at the enzymic level. To begin dissecting the biochemical mechanism(s) involved we focused on a key step: strand transfer between homologous parental DNAs. We detected a RecA-like strand transfer activity in stromal extracts from pea (Pisum sativum L.) chloroplasts. Formation of joint molecules requires Mg2+, ATP, and homologous substrates. This activity is inhibited by excess single-stranded DNA (ssDNA), suggesting a necessary stoichiometric relation between enzyme and ssDNA. In a novel assay with Triton X-100-permeabilized chloroplasts, we also detected strand invasion of the endogenous chloroplast DNA by 32P-labeled ssDNA complementary to the 16S rRNA gene. Joint molecules, analyzed by electron microscopy, contained the expected displacement loops. The downloadable document attached here contains only an abstract, acknowledgment of research funding, and a link to the full text on the Plant Physiology website
Fidelity and level correlations in the transition from regularity to chaos
Mean fidelity amplitude and parametric energy--energy correlations are
calculated exactly for a regular system, which is subject to a chaotic random
perturbation. It turns out that in this particular case under the average both
quantities are identical. The result is compared with the susceptibility of
chaotic systems against random perturbations. Regular systems are more
susceptible against random perturbations than chaotic ones.Comment: 7 pages, 1 figur
Chapter 3. Quantifying Illegal Logging and Related Timber Trade
Understanding the magnitude of illegal logging and related timber trade as well as illegal trade flows is critical to addressing the problem. This chapter provides an overview of the estimates of illegal logging and related international timber trade, as well as providing a summary and comparison of estimation methods. Major legal and illegal international timber trade flows are portrayed along with domestic, regional and global wood products markets, and supply chains representing key agents in producer, processing and consumer countries. The chapter also presents financial flows associated with illegal logging and timber trade. Finally, data gaps are identified, and new developments in illegal logging and timber trade are discussed along with possible solutions
Particle Acceleration in Pulsar Wind Nebulae: PIC modelling
We discuss the role of particle-in-cell (PIC) simulations in unveiling the
origin of the emitting particles in PWNe. After describing the basics of the
PIC technique, we summarize its implications for the quiescent and the flaring
emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be
emerging that, in addition to the standard scenario of particle acceleration
via the Fermi process at the termination shock of the pulsar wind, magnetic
reconnection in the wind, at the termination shock and in the Nebula plays a
major role in powering the multi-wavelength signatures of PWNe.Comment: 32 pages, 16 figures, to appear in the book "Modelling Nebulae"
edited by D. Torres for Springer, based on the invited contributions to the
workshop held in Sant Cugat (Barcelona), June 14-17, 201
Extreme Plasma Astrophysics
This is a science white paper submitted to the Astro-2020 and Plasma-2020
Decadal Surveys. The paper describes the present status and emerging
opportunities in Extreme Plasma Astrophysics -- a study of
astrophysically-relevant plasma processes taking place under extreme conditions
that necessitate taking into account relativistic, radiation, and QED effects.Comment: A science white paper submitted to the Astro-2020 and Plasma-2020
Decadal Surveys. 7 pages including cover page and references. Paper updated
in late March 2019 to include a several additional co-authors and references,
and a few small change
Testing Beam-Induced Quench Levels of LHC Superconducting Magnets
In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with
the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of
the nominal 7 TeV. The currents in the superconducting magnets were reduced
accordingly. To date only seventeen beam-induced quenches have occurred; eight
of them during specially designed quench tests, the others during injection.
There has not been a single beam- induced quench during normal collider
operation with stored beam. The conditions, however, are expected to become
much more challenging after the long LHC shutdown. The magnets will be
operating at near nominal currents, and in the presence of high energy and high
intensity beams with a stored energy of up to 362 MJ per beam. In this paper we
summarize our efforts to understand the quench levels of LHC superconducting
magnets. We describe beam-loss events and dedicated experiments with beam, as
well as the simulation methods used to reproduce the observable signals. The
simulated energy deposition in the coils is compared to the quench levels
predicted by electro-thermal models, thus allowing to validate and improve the
models which are used to set beam-dump thresholds on beam-loss monitors for Run
2.Comment: 19 page
Magnetoluminescence
Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain
regions where the electromagnetic energy density greatly exceeds the plasma
energy density. These sources exhibit dramatic flaring activity where the
electromagnetic energy distributed over large volumes, appears to be converted
efficiently into high energy particles and gamma-rays. We call this general
process magnetoluminescence. Global requirements on the underlying, extreme
particle acceleration processes are described and the likely importance of
relativistic beaming in enhancing the observed radiation from a flare is
emphasized. Recent research on fluid descriptions of unstable electromagnetic
configurations are summarized and progress on the associated kinetic
simulations that are needed to account for the acceleration and radiation is
discussed. Future observational, simulation and experimental opportunities are
briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts
and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews
serie
Biodistribution PET/CT study of hemoglobin-DFO-89Zr complex in healthy and lung tumor-bearing mice
Proteins, as a major component of organisms, are considered the preferred biomaterials for drug delivery vehicles. Hemoglobin (Hb) has been recently rediscovered as a potential drug carrier, but its use for biomedical applications still lacks extensive investigation. To further explore the possibility of utilizing Hb as a potential tumor targeting drug carrier, we examined and compared the biodistribution of Hb in healthy and lung tumor-bearing mice, using for the first time89 Zr labelled Hb in a positron emission tomography (PET) measurement. Hb displays a very high conjugation yield in its fast and selective reaction with the maleimide-deferoxamine (DFO) bifunctional chelator. The high-resolution X-ray structure of the Hb-DFO complex demonstrated that cysteine β93 is the sole attachment moiety to the αβ-protomer of Hb. The Hb-DFO complex shows quantitative uptake of89 Zr in solution as determined by radiochromatography. Injection of 0.03 mg of Hb-DFO-89 Zr complex in healthy mice indicates very high radioactivity in liver, followed by spleen and lungs, whereas a threefold increased dosage results in intensification of PET signal in kidneys and decreased signal in liver and spleen. No difference in biodistribution pattern is observed between naïve and tumor-bearing mice. Interestingly, the liver Hb uptake did not decrease upon clodronate-mediated macrophage depletion, indicating that other immune cells contribute to Hb clearance. This finding is of particular interest for rapidly developing clinical immunology and projects aiming to target, label or specifically deliver agents to immune cells
- …