855 research outputs found

    Ion implantation in polymers: chemical aspects

    Get PDF
    The review summarizes results of the investigations on the nature of chemical processes occurring in the polymer matrix under ion bombardment and the role of these processes in modification of electrical and optical properties of ionimplanted polymers. The fate of the implanted species, structure of ionimplanted layer and possible microelectronic applications of ion-implanted polymers are also discussed

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University

    MODERN ANALYSIS METHODS USE IN ORDER TO ESTABLISH THE GEOGRAPHIC ORIGIN OF FOOD PRODUCTS

    Get PDF
    Food products with controlled geographical origin place are in special demand among consumers because of their specific properties, due to climatic, soil characteristics or other factors. The article provides an analysis of regulatory framework for legal goods protection with an indication of their origin place on the territory of the Russian Federation and in other countries. Existing authentication methods for this type of product are reviewed. Based on the analysis of scientific literature, the authors noted the most significant works aimed at confirming the authenticity of food products’ origin place on the example of honey and meat products, which were carried out in the countries of the European Union, Australia, China, Brazil, South Africa, the USA and other countries. It is shown that the most widespread researches aimed at studying values of isotopic ratios of hydrogen (2H/1H), carbon (13C/12C), oxygen (18O/16O), nitrogen (15N/14N) and sulfur (34S/32S) in compounds contained in products that reflect the distribution of «light» and «heavy» isotopes during biological and geochemical processes within a single region. The analysis of the works aimed at studying the qualitative and quantitative composition of trace elements and rare earth metals (As, B, Ba, Cd, Li, Mn, Pd, Rb, Se, Te, Tl, Dy, U, etc.), as well as research of isotopic relations values of some elements (87Sr/86Sr, 207Pb/206Pb, etc.) in product samples and soils of studied region. The advantages of an integrated research approach, which includes the creation of data array of various indicators values and its in-depth analysis using chemometric algorithms and mathematical modeling methods, are shown.Food products with controlled geographical origin place are in special demand among consumers because of their specific properties, due to climatic, soil characteristics or other factors. The article provides an analysis of regulatory framework for legal goods protection with an indication of their origin place on the territory of the Russian Federation and in other countries. Existing authentication methods for this type of product are reviewed. Based on the analysis of scientific literature, the authors noted the most significant works aimed at confirming the authenticity of food products’ origin place on the example of honey and meat products, which were carried out in the countries of the European Union, Australia, China, Brazil, South Africa, the USA and other countries. It is shown that the most widespread researches aimed at studying values of isotopic ratios of hydrogen (2H/1H), carbon (13C/12C), oxygen (18O/16O), nitrogen (15N/14N) and sulfur (34S/32S) in compounds contained in products that reflect the distribution of «light» and «heavy» isotopes during biological and geochemical processes within a single region. The analysis of the works aimed at studying the qualitative and quantitative composition of trace elements and rare earth metals (As, B, Ba, Cd, Li, Mn, Pd, Rb, Se, Te, Tl, Dy, U, etc.), as well as research of isotopic relations values of some elements (87Sr/86Sr, 207Pb/206Pb, etc.) in product samples and soils of studied region. The advantages of an integrated research approach, which includes the creation of data array of various indicators values and its in-depth analysis using chemometric algorithms and mathematical modeling methods, are shown

    In memoriam two distinguished participants of the Bregenz Symmetries in Science Symposia: Marcos Moshinsky and Yurii Fedorovich Smirnov

    Full text link
    Some particular facets of the numerous works by Marcos Moshinsky and Yurii Fedorovich Smirnov are presented in these notes. The accent is put on some of the common interests of Yurii and Marcos in physics, theoretical chemistry, and mathematical physics. These notes also contain some more personal memories of Yurii Smirnov.Comment: Submitted for publication in Journal of Physics: Conference Serie

    Lignosulfonate, anionic surfactants and their mixtures influence on water solutions surface tension and zinc concentrate pressure leaching

    Get PDF
    The formation of elemental sulfur during sulfide concentrate pressure leaching leads to the appearance of sulfur-sulfide granules, which significantly reduces zinc dissolution rate. The solution for this problem was the use of surfactants, which prevents the negative effect of molten sulfur, avoiding the granule formation during leaching. Lignosulfonates (waste from the woodworking industry) are most often used as reagents for sulfide concentrate pressure leaching. Influence of individual and mixtures of surfactants on surface tension of aqueous solutions, zinc extraction and size-grade distribution of cakes after sulfide zinc concentrate pressure leaching. Surface tension of aqueous solutions was analyzed by stalagmometric method. Leaching was performed in titanium autoclave in presence of lignosulfonate, sodium dodecylbenzenesulfonate and sodium dodecylsulfate. Solutions after leaching were analyzed on zinc by atomic absorption spectroscopy. Size-grade analysis of cakes after leaching was carried out by laser diffraction particle size analyzer. In this work, synergetic influence was observed of anionic surfactants and lignosulfonate on decreasing of aqueous solutions surface tension. The best results were obtained when LS-SDBS mixture was used, namely in the range of sodium dodecylbenzenesulfonate concentrations 400-600 mg / l. Usage of combined surfactants allowed to achieve high rates of zinc extraction and optimal particle size of cakes after leaching. At Ls and SDBS using zinc extraction was increased from 77,2 % up to 82,8 %, with the bulk of the cake (96,7%) having a particle size of-150 μm. Combined surfactants usage (lignosulfonate and sodium dodecylbenzenesulfonate) can be recommended for applying at pressure leaching of sulfide zinc concentrates. © Published under licence by IOP Publishing Ltd.Leaching experiments and grade size analysis were conducted at the expense of the Russian Science Foundation grant (project No. 18-19-00186)

    Revisiting the 'LSND anomaly' II: critique of the data analysis

    Full text link
    This paper, together with a preceding paper, questions the so-called 'LSND anomaly': a 3.8 sigma excess of antielectronneutrino interactions over standard backgrounds, observed by the LSND Collaboration in a beam dump experiment with 800 MeV protons. That excess has been interpreted as evidence for the antimuonneutrino to antielectronneutrino oscillation in the \Deltam2 range from 0.2 eV2 to 2 eV2. Such a \Deltam2 range is incompatible with the widely accepted model of oscillations between three light neutrino species and would require the existence of at least one light 'sterile' neutrino. In a preceding paper, it was concluded that the estimates of standard backgrounds must be significantly increased. In this paper, the LSND Collaboration's estimate of the number of antielectronneutrino interactions followed by neutron capture, and of its error, is questioned. The overall conclusion is that the significance of the 'LSND anomaly' is not larger than 2.3 sigma.Comment: 30 pages, 16 figures, 6 table

    Reply to 'Corrections to the HARP-CDP Analysis of the LSND Neutrino Oscillation Backgrounds'

    Full text link
    The alleged mistakes in recent papers that reanalyze the backgrounds to the 'LSND anomaly' do not exist. We maintain our conclusion that the significance of the 'LSND anomaly' is not 3.8 sigma but not larger than 2.3 sigma.Comment: 3 page

    Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions VII: tin nuclei and beam momenta from \pm3 GeV/c to \pm15 GeV/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.Comment: 68 pages, 13 figure

    Process modelling of sugar mill biomass to energy conversion processes and energy integration of pyrolysis

    Get PDF
    ENGLISH ABSTRACT: The sugar industry over the years has been producing sugarcane bagasse as part of the sugar milling process. Currently this sugar mill biomass is incinerated inefficiently as a means of their disposal to produce steam and electricity, which in most cases are only just enough to supply the energy required to run the mills, thereby leaving very little or no extra energy for sale to bring in extra income in addition to sales revenue from sugar. However, the recent instability and uncertainties in the price of sugar and the global call for a green and sustainable environment have necessitated the search for ways of making effective use of this biomass to supply sugar mill energy demands, while producing extra energy in the form of electricity and other energy products for sale and at the same time contributing towards environmental sustainability. The main objective of this work was to develop process models for the processing of sugar mill biomass into energy and energy products. Based on this, biomass to energy conversion process (BMECP) models have been developed for various process configurations of two thermochemical processes; Combustion and Fast Pyrolysis using the Aspen Plus® simulation software. The aim of process modelling was to utilizing sugar cane bagasse as an input energy source to supply the energy requirements of two sugar mill configurations (efficient and less efficient mills), while generating extra electricity and high valued energy products for sale. Four BMECP configurations; 30bar BPST, 40bar CEST, 63bar CEST and 82bar CEST systems were modelled for the combustion thermochemical process. For the fast pyrolysis thermochemical process, two process configurations: Pure Fast Pyrolysis BMECP and Partial Fast Pyrolysis BMECP were modelled. The former BMECP utilizes all available bagasse through fast pyrolysis to produce bio-oil and biochar alongside generating electricity as well as energy to run the sugar mill operations. In the latter BMECP model, only surplus bagasse after separation of the quantity needed to supply the sugar mill energy requirement and electricity production is used to produce bio-oil and biochar. The technical performance of the BMECP models have been analysed and compared based on steam and electricity production rates, process efficiencies and environmental impacts (based on CO2 savings). The effects of boiler operating pressure and bagasse moisture content on the performance of the combustion based BMECP models have also been investigated. Finally, detailed economic models have been developed using the Aspen Process Economic Analyzer (Icarus®) to assess the economic viability of the BMECP models and sensitivity analysis performed to study the response of the BMECP models to variations in economic parameters. Technical performance analysis shows the combustion based BMECP models perform better than the Pure Fast Pyrolysis and Partial Fast Pyrolysis BMECP models with regards to steam and electricity production, thereby giving them higher electrical efficiencies. The electricity generation rate has been shown to increase with increasing boiler operating pressure and decreasing bagasse moisture content while steam production rate has been shown to increase with decreasing bagasse moisture content and decreasing boiler operating pressure. Despite the lower electrical efficiencies of the fast pyrolysis based BMECP models, the analysis shows that their overall process efficiencies compare very well with those of the combustion based BMECP models due to the production of high energy value pyrolysis products. Based on common operating pressure and 50% bagasse moisture content, the Pure Fast Pyrolysis and the Partial Fast Pyrolysis models have proved to be more environmental friendly with hourly CO2 savings of 40.44 and 41.30 tons for the Partial Fast Pyrolysis BMECP and the Pure Fast Pyrolysis BMECP respectively based on a 300 ton of sugarcane/h (81 ton bagasse/h) plant size. From an economic point of view, biomass combustion based on the 63bar CEST BMECP model has proved to be the most economically viable option under current economic conditions. First order total capital investment estimate for this BMECP is about 116million,producingNPVof116 million, producing NPV of 390 million at the end of a 20 year plant life and IRR of 34.51%. The Pure Fast Pyrolysis BMECP model is the least economic viable option. Sensitivity analysis shows this BMECP model is the most sensitive to changes in bagasse and electricity prices; recording -191.61/+446.86% change in NPV for a ±30% change in bagasse price and -91.5/+338.60% for a ±30% change in electricity price.AFRIKAANSE OPSOMMING: Die afgelope jare het suikerriet-afval (bagasse) by suikermeule ‘n belangrik byproduk van die suiker-industie geraak. Tans word hierdie afval of biomasse verbrand in die suikermeule se poging om stoom en elektrisiteit op te wek; maar die die proses is oneffektief. Die hoeveelheid energie wat opgewek word, is skaars genoeg om die suikermeule self aan die gang te hou; daar is feilik geen sprake ‘n surplus energie waaruit ekstra inkomste verkry kan word toevoegend tot inkomste uit die suiker verkope self. Die huidige onstabiele suikerprys en gepaardgaande onsekerhede sowel as die werêldwye oproep vir ‘n groen- en volhoubare omgewing, noodsaak ‘n nuwe soeke na effektiewe manier om die afvalmateriaal sinvol te verwerk. Die tipe effektiwiteit van verwerking waarna gesoek word moet die volgende uitkomste hê: verskaffing van genoeg energie tydens produksie aan die suikermeuele self; vervaardiging van ekstra energie in die vorm van eletrisieteit en ander energie produkte. Terselfder moet die ook bydra tot die volhoubaarheid van die omgewing. Die grootste gedeelte van hierdie navorsing is gewy aan die ontwikkeling van “proses modelle” om suikemeule afval (bagasse) te omskep in energie en energie-produkte. Om hierdie doel te bereik, is biomassa-tot-energie omskeppingsproses- modelle (BMECP) ontwikkel om verskeie proses konfigurasies van twee termo-chemiese prosesse, naamlik Verbranding (Combustion), en Vinnige Pirolise (Fast Pyrolysis) deur die gebruik van die ‘Aspen Plus®’- simulasie sagteware. Die doel van die proses modelering was om suikerriet biomassa as ‘n bron van energie te gebruik om weer die energie benodighehede van twee denkbeeldige suikermeule vas te stel; een meul is voorgestel as effektief, die ander as minder effektief. Terselfdertyd is gekyk na die hoeveelheid ekstra energie wat elkeen sou opwek en ander hoogs waardevolle energie produkte om te verkoop (bv. ‘bio-olies en bio-char’). Vier “BMECP” konfigurasies (voorstellings) 30bar BPST, 40bar CEST, 63bar CEST en 82bar CEST sisteme is gemodelleer vir die Verbranding termo-chemiese proses. In die geval van die Pirolise (Pyrolysis) termo-chemiese proses, is twee proses konfigurasies gemodelleer: 1. Suiwer Vinnige Pyrolyise BMECP en 2. Gedeeltelik Vinnige Pirolise BMECP. In die geval van eersgenoemde, word alle beskikbare ‘bagasse’ deur vinnige pirolise omskep om ‘bio-olie’ en ‘bio-char’ te vervaardig.Verder wek dit ook elektrisiteit op so wel as die nodige energie om die suikermeule te laat opereer. In die geval van die Gedeeltlike Vinnige Pirolise BMECP , moet daar eers genoegsame ‘bagasse’ opsy gesit word om die suikermeule van genoegsame energie te voorsien vir die volle funskionering daarvan en elektrisiteit-opwekking. Van die surplus of oorblywende ‘bagasse’ kan dan gebruik word om ‘bio-olie’ en ‘biochar’ te produseer. Die tegniese prestasie van al die BMECP modelle is geanaliseer en vergelyk ten opsigte van stoom en elektrisiteits-opwekking; proses effektiewiteit asook die impak op die omgewing ( gebaseer op CO2 –besparings). Die effek van stoomkettel-druk tydens operering asook die bagasse se vog-inhoud. Op die prestasie van die verbrandingsgebaseerde modelle is ook ondersoek. Laastens, uitgebreide ekonomeidese modelle is ook ontwikkel deur die gebruik van die ‘Aspen Process Economic Analyser (Icarus®)’. Sodoende is die ekonomiese vatbaarheid van die BMECP modelle ondersoek. Hierdie sagteware help ook met. Sensitiwiteits-analise in die bestudering van die terugvoer van die BMECP modelle tot veranderlikes in ekonomiese parameters. Rakende effektiwiteit, toon die uitslae dat die verbrandings-gebaseerde BMECP modelle beter vaar as die met betrekking tot stoom- en elektrisiteits-opwekking. Verbrandings-gebaseerde-modelle toon hoër elektriese effektiwiteit. Indien die vog-inhoud van die bagasse laag was en die tempo van stoomketel operasie druk verhoog is, het die tempo van elektriesiteits-opwekking ook gestyg. Ten opsigte van stoom daarenteen, het die stoom-opwekking tempo verhoog in die die vogl inhou van diebagasse laag was asook verminderde stoomketel operering druk. Ten spyte van die laer elektriese effektiewiteit van die Suiwer Vinnig- en Gedeeltelik Vinnig BMECP modelle, dui die analise aan dat hul proses effektiewiteit in die geheel Goed vergelyk met die van die verbrandings-gebaseerde BMECP modelle. Dit is toe te skryf aan die produksie van die hoë-energie draende pirolise produkte. Gebaseer op algemene operering druk van 50% ‘bagasse’ vog-inhoud, het die bogenoemde twee modelle bewys om meer omgewings-vriendelik te wees met uurlikse CO2-besparings. In die geval van Gedeeltelike Vinnige Pirolise BMECP, 40.44 en vir die Suiwer Vinnige Pirolise BMECP 41.30 gebaseer op ‘n 300 ton suikerriet/h (81 ton bagasse/h) plantasie-grote. Ten slotte, vanuit ‘n ekonomiese oogpunt, blyk ‘n biomassa verbranding gebaseer op die 63 bar CEST BMECP model die mees ekonomies-vatbare opsie onder huidige ekonomiese omstandighede. Eerste orde totale kapitale belegging beraming vir hierdie BMECP is ongeveer 116miljoen,produksieNPVis116 miljoen, produksie NPV is 390 miljoen aan die einde van ‘n 20 jaar tydperk vir ‘n suikerriet-aanleg. IRP is 34.51%. Die Suiwer Vinnige Pirolise BMECP is die mins-ekonomiese vatbare model. Sensitiewiteits-analises het getoon dat hierdie BMECP model baie sensitief is ten opsigte van verandering in die pryse van bagasse en elektrisieteit; in die geval van NPV is veranderinge van -191.61/+446.86% aangedui op ‘n ±30% verandering in bagasse pryse. In die geval van elektrisieteitspryse, is ‘n sensitiewiteit van van -91.5/+338.60% op ‘n ±30% prysverandering getoon
    corecore