9 research outputs found

    High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease

    Get PDF
    To evaluate the feasibility and diagnostic performance of high spatial resolution myocardial perfusion cardiac magnetic resonance (perfusion-CMR). Methods and results Fifty-four patients underwent adenosine stress perfusion-CMR. An in-plane spatial resolution of 1.4 x 1.4 mm(2) was achieved by using 5x k-space and time sensitivity encoding (k-t SENSE). Perfusion was visually graded for 16 left ventricular and two right ventricular (RV) segments on a scale from 0 = normal to 3 = abnormal, yielding a perfusion score of 0-54. Diagnostic accuracy of the perfusion score to detect coronary artery stenosis of >50% on quantitative coronary angiography was determined. Sources and extent of image artefacts were documented. Two studies (4%) were non-diagnostic because of k-t SENSE-related and breathing artefacts. Endocardial dark rim artefacts if present were small (average width 1.6 mm). Analysis by receiver-operating characteristics yielded an area under the curve for detection of coronary stenosis of 0.85 [95% confidence interval (CI) 0.75-0.95] for all patients and 0.82 (95% CI 0.65-0.94) and 0.87 (95% CI 0.75-0.99) for patients with single and multi-vessel disease, respectively. Seventy-four of 102 (72%) RV segments could be analysed. Conclusion High spatial resolution perfusion-CMR is feasible in a clinical population, yields high accuracy to detect single and multi-vessel coronary artery disease, minimizes artefacts and may permit the assessment of RV perfusion

    Commissioning of the CALIFA Barrel Calorimeter of the R3^{3}B Experiment at FAIR

    Get PDF
    CALIFA is the high efficiency and energy resolution calorimeter for the R3^{3}B experiment at FAIR, intended for detecting high energy charged particles and γ\gamma-rays in inverse kinematics direct reactions. It surrounds the reaction target in a segmented configuration of Barrel and Forward End-Cap pieces. The CALIFA Barrel consists of 1952 detection units made of CsI(Tl) long-shaped scintillator crystals, and it is being commissioned during the Phase0 experiments at FAIR. The first setup for the CALIFA Barrel commissioning is presented here. Results of detector performance with γ\gamma-rays are obtained, and show that the system fulfills the design requirements

    k-Space and time sensitivity encoding-accelerated myocardial perfusion MR imaging at 3.0 T: comparison with 1.5 T

    No full text
    PURPOSE: To determine the feasibility and diagnostic accuracy of high-spatial-resolution myocardial perfusion magnetic resonance (MR) imaging at 3.0 T by using k-space and time (k-t) domain undersampling with sensitivity encoding (SENSE), or k-t SENSE. Data were compared with results of k-t SENSE-accelerated high-spatial-resolution perfusion MR imaging at 1.5 T and standard-resolution acquisition at 3.0 T. MATERIALS AND METHODS: The study was reviewed and approved by the local ethics review board; informed consent was obtained. k-t SENSE perfusion MR imaging was performed at 1.5 and 3.0 T (fivefold k-t SENSE acceleration; spatial resolution, 1.3 x 1.3 x 10 mm). Fourteen volunteers were studied at rest; 37 patients were studied during adenosine-induced stress. In volunteers, comparison was also made with standard-resolution (2.5 x 2.5 x 10 mm) twofold SENSE perfusion MR imaging results at 3.0 T. Image quality, artifact scores, signal-to-noise ratios (SNRs), and contrast enhancement ratios were derived. In patients, diagnostic accuracy of visual analysis to detect stenosis of more than 50% narrowing in diameter at quantitative coronary angiography was determined by using receiver operator characteristic (ROC) analysis. RESULTS: In volunteers, image quality and artifact scores were similar for 3.0- and 1.5-T k-t SENSE perfusion MR imaging, while SNR was higher (11.6 vs 5.6) and contrast enhancement ratio was lower (1.1 vs 1.5, P = .012) at 3.0 T. Compared with standard-resolution perfusion MR imaging, image quality was higher for 3.0-T k-t SENSE (3.6 vs 3.1, P = .04), endocardial dark rim artifacts were reduced (artifact thickness, 1.6 vs 2.4 mm, P < .001), and contrast enhancement ratios were similar. In patients, areas under the ROC curve for detection of coronary stenosis were 0.89 and 0.80 (P = .21) for 3.0 and 1.5 T, respectively. CONCLUSION: k-t SENSE-accelerated high-spatial-resolution perfusion MR imaging at 3.0 T is feasible, with similar artifacts and diagnostic accuracy as those at 1.5 T. Compared with standard-resolution twofold SENSE perfusion MR imaging, image quality at k-t SENSE MR imaging is improved and artifacts are reduced. (c) RSNA, 2008

    Commissioning of the CALIFA Barrel Calorimeter of the R3B Experiment at FAIR

    No full text
    5 pags., 4 figs. -- FAIRNESS2019: FAIR NExt generation ScientistS 20-24 May 2019, Arenzano, Genova, ItalyCALIFA is the high efficiency and energy resolution calorimeter for the R3B experiment at FAIR, intended for detecting high energy charged particles and ¿-rays in inverse kinematics direct reactions. It surrounds the reaction target in a segmented configuration of Barrel and Forward End-Cap pieces. The CALIFA Barrel consists of 1952 detection units made of CsI(Tl) long-shaped scintillator crystals, and it is being commissioned during the Phase0 experiments at FAIR. The first setup for the CALIFA Barrel commissioning is presented here. Results of detector performance with ¿-rays are obtained, and show that the system fulfills the design requirements.The author’s work has been financially supported by the Spanish MICCIN grant FPA2015-69640-C2-1-P

    Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout

    No full text
    CALIFA is the high efficiency and energy resolution calorimeter for the R3B experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the R3B calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling

    Performance recovery of long CsI(Tl) scintillator crystals with APD-based readout

    No full text
    6 pags., 8 figs., 3 tabs.CALIFA is the high efficiency and energy resolution calorimeter for the RB experiment at FAIR, intended for detecting high energy light charged particles and gamma rays in scattering experiments, and is being commissioned during the Phase-0 experiments at FAIR, between 2018 and 2020. It surrounds the reaction target in a segmented configuration with 2432 detection units made of long CsI(Tl) finger-shaped scintillator crystals. CALIFA has a 10 year intended operational lifetime as the RB calorimeter, necessitating measures to be taken to ensure enduring performance. In this paper we present a systematic study of two groups of 6 different detection units of the CALIFA detector after more than four years of operation. The energy resolution and light output yield are evaluated under different conditions. Tests cover the aging of the first detector units assembled and investigates recovery procedures for degraded detection units. A possible reason for the observed degradation is given, pointing to the crystal-APD coupling.This work has been financially supported by the European Union Horizon 2020 research and innovation programme under grants agree-ments No 262010 (ENSAR) and No 654002 (ENSAR2), the Spanish MICCIN grants FPA47831-C2-1P and FPA2015-69640-C2-1-P, by the Plan Galego de Investigación, Innovación e Crecemento (I2C) of Xunta de Galicia, Spain under projects POS-B/2016/015, GRC2013-011 andED431C 2017/54 and by the German BMBF (No. 05P19RDFN1), TUDarmstadt - GSI cooperation contract, HIC for FAIR

    Lifetimes of the 4(1)(+) states of Po-206 and Po-204: A study of the transition from noncollective seniority-like mode to collectivity

    Get PDF
    Low-lying yrast states of Po-204 and Po-206 were investigated by the gamma-gamma fast timing technique with LaBr3(Ce) detectors. Excited states of these nuclei were populated in the Au-197(B-11, 4n)Po-204 and the Pt-198(C-12, 4n )Po-206 fusion-evaporation reactions, respectively. The beams were delivered by the FN-Tandem accelerator at the University of Cologne. The lifetimes of the 4(1)(+) states of both nuclei were measured, along with an upper lifetime limit for the 2(1)(+) state of Po-204. A comparison between the derived B(E2; 4(1)(+) -> 2(1)(+)) values and results from simplified empirical two-state mixing calculations suggests that for the 4(1)(+) states of even-even polonium isotopes the transition from single-particle mode at N = 126 to collective mode, when reducing the number of neutrons, occurs above N = 122
    corecore