5,486 research outputs found
Global analysis of muon decay measurements
We have performed a global analysis of muon decay measurements to establish
model-independent limits on the space-time structure of the muon decay matrix
element. We find limits on the scalar, vector and tensor coupling of right- and
left-handed muons to right- and left-handed electrons. The limits on those
terms that involve the decay of right-handed muons to left-handed electrons are
more restrictive than in previous global analyses, while the limits on the
other non-standard model interactions are comparable. The value of the Michel
parameter eta found in the global analysis is -0.0036 \pm 0.0069, slightly more
precise than the value found in a more restrictive analysis of a recent
measurement. This has implications for the Fermi coupling constant G_F.Comment: 5 pages, 3 table
Recommended from our members
Single-shot optical conductivity measurement of dense aluminum plasmas
The optical conductivity of a dense femtosecond laser-heated aluminum plasma heated to 0.1-1.5 eV was measured using frequency-domain interferometry with chirped pulses, permitting simultaneous observation of optical probe reflectivity and probe pulse phase shift. Coupled with published models of bound-electron contributions to the conductivity, these two independent experimental data yielded a direct measurement of both real and imaginary components of the plasma conductivity.DOE National Nuclear Security Administration DE-FC52-03NA00156Physic
Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario
The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil core
Liposomal delivery of hydrophobic RAMBAs provides good bioavailability and significant enhancement of retinoic acid signalling in neuroblastoma tumour cells
Retinoid treatment is employed during residual disease treatment in neuroblastoma, where the aim is to induce neural differentiation or death in tumour cells. However, although therapeutically effective, retinoids have only modest benefits and suffer from poor pharmacokinetic properties. In vivo, retinoids induce CYP26 enzyme production in the liver, enhancing their own rapid metabolic clearance, while retinoid resistance in tumour cells themselves is considered to be due in part to increased CYP26 production. Retinoic acid metabolism blocking agents (RAMBAs), which inhibit CYP26 enzymes, can improve retinoic acid pharmacokinetics in pre-clinical neuroblastoma models. Here we demonstrate that in cultured neuroblastoma tumour cells, RAMBAs enhance retinoic acid action as seen by morphological differentiation, AKT signalling and suppression of MYCN protein. Although active as retinoid enhancers, these RAMBAs are highly hydrophobic and their effective delivery in humans will be very challenging. Here we demonstrate that such RAMBAs can be loaded efficiently into cationic liposomal particles, where the RAMBAs achieve good bioavailability and activity in cultured tumour cells. This demonstrates the efficacy of RAMBAs in enhancing retinoid signaling in neuroblastoma cells and shows for the first time that liposomal delivery of hydrophobic RAMBAs is a viable approach, providing novel opportunities for their delivery and application in humans
Nuclear Magnetic Moment of the 57Cu Ground State
The nuclear magnetic moment of the ground state of 57Cu has been measured to
be 2.00 +/- 0.05 nuclear magnetons (nm) using the beta-NMR technique. Together
with the known magnetic moment of the mirror partner 57Ni, the spin extraction
value was extracted as -0.78 +/- 0.13. This is the heaviest isospin T=1/2
mirror pair above the 40Ca region, for which both ground state magnetic moments
have been determined. Shell model calculations in full fp shell giving
mu(57Cu)~2.4 nm and ~0.5 imply significant shell breaking at 56Ni
with the neutron number N=28.Comment: 4 pages, 3 figures, accepted in PR
Anomalous strength of membranes with elastic ridges
We report on a simulational study of the compression and buckling of elastic
ridges formed by joining the boundary of a flat sheet to itself. Such ridges
store energy anomalously: their resting energy scales as the linear size of the
sheet to the 1/3 power. We find that the energy required to buckle such a ridge
is a fixed multiple of the resting energy. Thus thin sheets with elastic ridges
such as crumpled sheets are qualitatively stronger than smoothly bent sheets.Comment: 4 pages, REVTEX, 3 figure
Particle trajectories in linearized irrotational shallow water flows
We investigate the particle trajectories in an irrotational shallow water
flow over a flat bed as periodic waves propagate on the water's free surface.
Within the linear water wave theory, we show that there are no closed orbits
for the water particles beneath the irrotational shallow water waves. Depending
on the strength of underlying uniform current, we obtain that some particle
trajectories are undulating path to the right or to the left, some are looping
curves with a drift to the right and others are parabolic curves or curves
which have only one loop
Electoral and political changes: the impact on political bureaucratic relationships in Scottish Local Government
Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry
Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions
Differentiating c8-t1 radiculopathy from ulnar neuropathy: A survey of 24 spine surgeons
Study Design Questionnaire. Objective To evaluate the ability of spine surgeons to distinguish C8–T1 radiculopathies from ulnar neuropathy. Methods Twenty-four self-rated “experienced” cervical spine surgeons completed a questionnaire with the following items. (1) If the ulnar nerve is cut at the elbow, which of the following would be numb: ulnar forearm, small and ring fingers; only the ulnar forearm; only the small and ring fingers; or none of the above? (2) Which of the following muscles are weak with C8–T1 radiculopathies but intact with ulnar neuropathy at the elbow: flexor digiti minimi brevis, flexor pollicis brevis, abductor digiti minimi, abductor pollicis brevis, adductor pollicis, opponens digiti minimi, opponens pollicis, medial lumbricals, lateral lumbricals, dorsal interossei, palmar interossei? Results Fifteen of 24 surgeons (63%) correctly answered the first question—that severing the ulnar nerve results in numbness of the fifth and fourth fingers. None correctly identified all four nonulnar, C8–T1-innervated options in the second question without naming additional muscles. Conclusion The ulnar nerve provides sensation to the fourth and fifth fingers and medial border of the hand. The medial antebrachial cutaneous nerve provides sensation to the medial forearm. The ulnar nerve innervates all intrinsic hand muscles, except the abductor and flexor pollicis brevis, opponens pollicis, and lateral two lumbricals, which are innervated by C8 and T1 via the median nerve. By examining these five muscles, one can clinically differentiate cubital tunnel syndrome from C8–T1 radiculopathies. Although all participants considered themselves to be experienced cervical spine surgeons, this study reveals inadequate knowledge regarding the clinical manifestations of C8–T1 radiculopathies and cubital tunnel syndrome
- …
